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Why formalize?

• Fundamental understanding

• Decrease costs: high data and compute costs
• Avoid adversarial examples

The fundamental claim of the scattering transform is that
neural networks learn functions by finding their invariants
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Convolutional Neural Networks

General Neural net a j
i =σ(

~W ( j−1)
i ·~a( j−1)

)
Convolutional Neural net a j

i (k) = R
[
σ

(
~W ( j−1)

i ?~a( j−1)(k)
)]

Figure: From http://deeplearning.net/tutorial/lenet.html

Here a j is the set of coefficients in layer j , σ is a nonlinearity
such as |·| or ReLU, and R is a subsampling operator.
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Signal Invariants

How to construct a feature extractor that is invariant to
task-irrelevant deformations in the data? Some examples:

Translation Tc [ f ] = f (x − c)
Modulation Mω[ f ] = eiωt f (x)
Scaling Sa[ f ] = f

(
x/a

)
Amplitude Aa[ f ] = a f (x)

[?] and [?] demonstrated that only trivial linear features are
absolutely invariant to even just translation, so they use relative
invariance of feature extractor ρ:

ρ[Tc f ] = η(c)ρ[ f ]

They establish that the only linear feature extractors ρ[ f ] = 〈 f ,ρ〉
that are relatively invariant w.r.t. both amplitude and translation
deformations are Fourier-Laplace type, i.e. for some z ∈Cd

�

Rd

f (x)c1ez·x dx
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Edge detection & local features

Fourier coefficients have a couple of problems:

• Detects global features, rather than local

• Slow decay rate for signals with sharp edges, e.g. images

Loosening the translation invariance further, we have translation
covariance: ρ[Tc f ] = Tcρ[ f ], which implies a convolutional filter
ρ[Tc f ] = gρ ? f . Many examples adapted to address both of the
above, e.g. Wavelets, Curvelets, Shearlets.
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Shearlets

A particularly useful class of edge detectors for ≥ 2D data,
the filters are indexed by shearing, scale, location and cone:

S1[ f ] = ( f ?φ, f ?ψ j ,k )

ψ j ,k (x) = 2
(2+α) j/4ψ

(
A−1

j S−1
k x

)
A j =

(
2 j 0
0 2 jα/2

)
Sk =

(
1 ck
0 1

)
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Shearlet Sparsity of cartoon-like images

Shearlets use few coefficients to represent cartoon-like images

Decay rate of order log(n)

n3/2
, which is the optimal1 decay rate

across all recoverable linear transforms. See [?] for more
details.

1. modulo the logn
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Generalized Scattering Transform

A single propagating layer u[qi ] f of the generalized scattering
transform is a vector consisting of semi-discrete shift invariant frame
transforms ψ

λ(m)
i

? f indexed by λ(m)
i ∈Λm , a pointwise nonlinearity σm

with Lipschitz constant γm , and a subsampling factor rm ≥ 1.

Putting
together k indices in a path q = (λ(m)

im
, . . . ,λ(1)

i1
) gives the propagating

value at layer m:

u[λi ] f := 1

r d/2
1

σ
(
ψλi

? f
)
(r1·) m = 1

u[λ(2)
i ,λ(1)

j ] f := 1

r d/2
2

σ
(
ψ
λ(2)

i
?

1

r d/2
1

σ
(
ψ
λ(1)

j
? f

)
(r1·)

)
(r2·) m = 2

And so on, until the desired depth. The output sm [ f ] is taken by
averaging u[ f ] for every path q of depth m with one atom φm , and
then subsampling:

sm [λ(m)
im

, . . . ,λ(1)
i1

] f :=φm ?u[λ(m)
im

, . . .λ(1)
i1

] f

If we write s without an index, this is the collection of outputs at all
layers up to some desired M : 0,1, . . . , M .
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Generalized Scattering Transform

f(x)

u[q0]f

u[q0,0]f

...

u[q0,...,0]f u[qN,...,0]f

...

u[qN,0]f

...
...

u[qN ]f

u[q0,N ]f

...
...

u[qN,N ]f

...
...

u[q0,...,N ]f u[qN,...,N ]f

Layer m

...

Layer 2

Layer 1

Layer 0

s0f

s1[qN ]fs1[q0]f

s2[q0,0]f s2[qN,N ]f

sm[qN,...,0]f sm[q0,...,N ]fsm[q0,...,0]f

s2[q0,N ]f

sm[qN,...,N ]f

s2[qN,0]f

. . .

. . . . . .. . .

. . . . . .· · ·. . . . . .
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Previous Theory
Translation

The first results on Scattering transforms were from [?] and
his group. A more recent generalization for systems like
shearlets, relates depth m to translation:

Theorem (Translation invariance, [?])

As long as the frames have upper frame bounds bm satisfying
max{bm ,γm bm/r d

m} ≤ 1, the features at depth m satisfy:

Sm[Tc f ] = T c
r1 ···rm−1

Sm[ f ]

Further if the output atoms satisfy φ̂m |ω| ≤ K , this implies a
bound on the difference in norm:

‖Sm[ f ]−Sm[Tc f ]‖ ≤ 2π|c|K
r1 · · ·rm

‖ f ‖2

10 / 19
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Previous Theory
Non-uniform Translation and Modulation

In addition to this quasi-translation invariance, this
generalized scattering transform is stable under space and
frequency modulations:

Fτ,ω[ f ](x) = eiω(x) f
(
x −τ(x)

)
Theorem (Stability, [?])

If f is a band limited function, ω and τ are continuous, τ is
once differentiable and ‖∇τ‖∞ ≤ 1

2d , there is a C independent
of S so that∥∥∥S[ f ]−S

[
Fτ,ω[ f ]

]∥∥∥
2
≤C‖ f ‖2

(
R‖τ‖∞+‖ω‖∞

)
where the norm on S is just ‖·‖2 on each output element
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Shattering transform

using a shearlet scattering transform, in addition to the
previous result, we have that the coefficients decay at the
same rate as the linear coefficients:

Theorem (Sparsity)

Assume that the input image f is a cartoon-like function, i.e.
has the form f = f0 + f1χB , where fi is smooth, and ∂B is a
C 2 function, and that σ is smooth at all but one point. If we
denote the reordering of S[ f ] by size as ci , we have that

|ci | ≈O
( logn

n3/2

)
We have implemented the Shattering Transform in Julia in the
package collatingTransform.jl (to be released in the next 6
months)
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Sonar Scattering
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Sonar Scattering

Original signal Single input

14 / 19



The Shattering
Transform

David Weber
and Naoki Saito

Signal Invariants
and Edge
detection

Scattering
Transform

Shattering
Transform

Sonar
Classification

1D Classifier

Consider each 2D wavefield as a set of 1D signals, perform a
scattering transform using Morlet Wavelets, and use the
resulting vectors as the input to a linear classifier, in our case
Sparse logistic regression.

Figure: The triangle, the sharkfin and observation paths
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Synthetic Experiments
Material Discrimination
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Comparing Material Detection for a Triangle

finer ST
coarser ST
AVFT

Figure: The ROC curve for detecting the material difference in a
triangle, for speeds of sound c1 = 2000m/s and c1 = 2500m/s.
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Synthetic Experiments
Shape Discrimination
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Figure: The ROC curve for discriminating a shark-fin from a
triangle where both have a speed of sound fixed at 2000m/s.
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Real Experiments
UXO Detection
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Figure: The ROC curve for detecting UXOs. The scattering
transform has two layers, with quality factors Q1 =Q2 = 8
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Synthetic Experiments
Setup Description

We use Mallat’s framework with Morlet Wavelets, and
compare with the absolute value of the Fourier transform
(AVFT). We use two scattering transforms:

Type Q1 Q2 Q3

Finer 8 8 1
Coarser 8 4 4

• Each signal is normalized so the maximum amplitude is 1
• White Gaussian noise is added to get average SNR is
about 5dB.

• Multiclass logistic regression with Lasso (via Glmnet )
is used as a feature extractor and a classifier.

• Perform 10-fold cross validation, i.e., repeat the
classification 10 times by randomly splitting the whole
dataset into training and test sets with 50/50.

[?]
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