The Shattering Transform: formalizing convolutional networks to analyze few example raw sonar data

David Weber and Naoki Saito

Department of Mathematics University of California, Davis

December 16, 2019

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

• Fundamental understanding

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

- Fundamental understanding
- Decrease costs: high data and compute costs

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

- Fundamental understanding
- Decrease costs: high data and compute costs
- Avoid adversarial examples

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

- Fundamental understanding
- Decrease costs: high data and compute costs
- Avoid adversarial examples

The fundamental claim of the scattering transform is that neural networks learn functions by finding their invariants

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Convolutional Neural Networks

General Neural net Convolutional Neural net

$$\begin{aligned} a_i^j &= \sigma\big(\vec{W}_i^{(j-1)} \cdot \vec{a}^{(j-1)}\big) \\ a_i^j(k) &= R\left[\sigma\big(\vec{W}_i^{(j-1)} \star \vec{a}^{(j-1)}(k)\big)\right] \end{aligned}$$

Figure: From http://deeplearning.net/tutorial/lenet.html

Here a^j is the set of coefficients in layer j, σ is a nonlinearity such as $|\cdot|$ or ReLU, and R is a subsampling operator.

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Signal Invariants

How to construct a feature extractor that is invariant to task-irrelevant deformations in the data? Some examples:

 $\begin{array}{c|c} \text{Translation} & T_c[f] = f(x-c) \\ \text{Modulation} & M_{\omega}[f] = e^{i\omega t} f(x) \\ \text{Scaling} & \mathscr{S}_a[f] = f(x/a) \\ \text{Amplitude} & A_a[f] = af(x) \end{array}$

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Signal Invariants

How to construct a feature extractor that is invariant to task-irrelevant deformations in the data? Some examples:

Translation	$T_c[f] = f(x - c)$
Modulation	$M_{\omega}[f] = \mathrm{e}^{\mathrm{i}\omega t} f(x)$
Scaling	$\mathscr{S}_{a}[f] = f(x/a)$
Amplitude	$A_a[f] = af(x)$

[?] and [?] demonstrated that only trivial linear features are absolutely invariant to even just translation, so they use *relative invariance* of feature extractor ρ :

$$\rho[T_c f] = \eta(c)\rho[f]$$

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Signal Invariants

How to construct a feature extractor that is invariant to task-irrelevant deformations in the data? Some examples:

Translation	$T_c[f] = f(x-c)$
Modulation	$M_{\omega}[f] = \mathrm{e}^{\mathrm{i}\omega t} f(x)$
Scaling	$\mathscr{S}_a[f] = f(x/a)$
Amplitude	$A_a[f] = af(x)$

[?] and [?] demonstrated that only trivial linear features are absolutely invariant to even just translation, so they use *relative invariance* of feature extractor ρ :

$$\rho[T_c f] = \eta(c)\rho[f]$$

They establish that the only linear feature extractors $\rho[f] = \langle f, \rho \rangle$ that are relatively invariant w.r.t. both amplitude and translation deformations are Fourier-Laplace type, i.e. for some $z \in \mathbb{C}^d$

$$\int_{\mathbb{R}^d} f(x) c_1 \mathrm{e}^{z \cdot x} \, \mathrm{d}x$$

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Edge detection & local features

Fourier coefficients have a couple of problems:

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Edge detection & local features

Fourier coefficients have a couple of problems:

Detects global features, rather than local

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Edge detection & local features

Fourier coefficients have a couple of problems:

- Detects global features, rather than local
- Slow decay rate for signals with sharp edges, e.g. images

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Fourier coefficients have a couple of problems:

- Detects global features, rather than local
- Slow decay rate for signals with sharp edges, e.g. images

Loosening the translation invariance further, we have translation covariance: $\rho[T_c f] = T_c \rho[f]$, which implies a convolutional filter $\rho[T_c f] = g_\rho \star f$. Many examples adapted to address both of the above, e.g. Wavelets, Curvelets, Shearlets.

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Shearlets

A particularly useful class of edge detectors for \geq 2D data, the filters are indexed by shearing, scale, location and cone:

$$\mathcal{S}_{1}[f] = (f \star \phi, f \star \psi_{j,k})$$
$$\psi_{j,k}(x) = 2^{(2+\alpha)j/4} \psi \left(A_{j}^{-1} S_{k}^{-1} x \right)$$
$$A_{j} = \begin{pmatrix} 2^{j} & 0\\ 0 & 2^{j\alpha/2} \end{pmatrix} S_{k} = \begin{pmatrix} 1 & ck\\ 0 & 1 \end{pmatrix}$$

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Shearlet Sparsity of cartoon-like images

Shearlets use few coefficients to represent cartoon-like images

Decay rate of order $\frac{\log(n)}{n^{3/2}}$, which is the optimal¹ decay rate across all recoverable linear transforms. See [?] for more details.

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

A single propagating layer $u[q_i]f$ of the generalized scattering transform is a vector consisting of semi-discrete shift invariant frame transforms $\psi_{\lambda_i^{(m)}} \star f$ indexed by $\lambda_i^{(m)} \in \Lambda_m$, a pointwise nonlinearity σ_m with Lipschitz constant γ_m , and a subsampling factor $r_m \ge 1$.

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

A single propagating layer $u[q_i]f$ of the generalized scattering transform is a vector consisting of semi-discrete shift invariant frame transforms $\psi_{\lambda_i^{(m)}} \star f$ indexed by $\lambda_i^{(m)} \in \Lambda_m$, a pointwise nonlinearity σ_m with Lipschitz constant γ_m , and a subsampling factor $r_m \ge 1$.Putting together k indices in a path $q = (\lambda_{i_m}^{(m)}, \dots, \lambda_{i_1}^{(1)})$ gives the propagating value at layer m:

$$u[\lambda_i]f := \frac{1}{r_1^{d/2}} \sigma(\psi_{\lambda_i} \star f)(r_1 \cdot) \qquad m = 1$$

$$u[\lambda_i^{(2)},\lambda_j^{(1)}]f\!:=\!\frac{1}{r_2^{d/2}}\sigma\Big(\psi_{\lambda_i^{(2)}}\star\frac{1}{r_1^{d/2}}\sigma\big(\psi_{\lambda_j^{(1)}}\star f\big)(r_1\cdot)\Big)(r_2\cdot) \quad m=2$$

And so on, until the desired depth.

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

A single propagating layer $u[q_i]f$ of the generalized scattering transform is a vector consisting of semi-discrete shift invariant frame transforms $\psi_{\lambda_i^{(m)}} \star f$ indexed by $\lambda_i^{(m)} \in \Lambda_m$, a pointwise nonlinearity σ_m with Lipschitz constant γ_m , and a subsampling factor $r_m \ge 1$.Putting together k indices in a path $q = (\lambda_{i_m}^{(m)}, \dots, \lambda_{i_1}^{(1)})$ gives the propagating value at layer m:

$$u[\lambda_i]f := \frac{1}{r_1^{d/2}} \sigma(\psi_{\lambda_i} \star f)(r_1 \cdot) \qquad m = 1$$

$$u[\lambda_i^{(2)}, \lambda_j^{(1)}]f := \frac{1}{r_2^{d/2}} \sigma \Big(\psi_{\lambda_i^{(2)}} \star \frac{1}{r_1^{d/2}} \sigma \big(\psi_{\lambda_j^{(1)}} \star f \big)(r_1 \cdot) \Big)(r_2 \cdot) \quad m = 2$$

And so on, until the desired depth. The output $s^m[f]$ is taken by averaging u[f] for every path q of depth m with one atom ϕ_m , and then subsampling:

$$s_m[\lambda_{i_m}^{(m)},...,\lambda_{i_1}^{(1)}]f := \phi_m \star u[\lambda_{i_m}^{(m)},...\lambda_{i_1}^{(1)}]f$$

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

A single propagating layer $u[q_i]f$ of the generalized scattering transform is a vector consisting of semi-discrete shift invariant frame transforms $\psi_{\lambda_i^{(m)}} \star f$ indexed by $\lambda_i^{(m)} \in \Lambda_m$, a pointwise nonlinearity σ_m with Lipschitz constant γ_m , and a subsampling factor $r_m \ge 1$.Putting together k indices in a path $q = (\lambda_{i_m}^{(m)}, \dots, \lambda_{i_1}^{(1)})$ gives the propagating value at layer m:

$$u[\lambda_i]f := \frac{1}{r_1^{d/2}} \sigma(\psi_{\lambda_i} \star f)(r_1 \cdot) \qquad m = 1$$

$$u[\lambda_i^{(2)}, \lambda_j^{(1)}]f := \frac{1}{r_2^{d/2}} \sigma \Big(\psi_{\lambda_i^{(2)}} \star \frac{1}{r_1^{d/2}} \sigma \big(\psi_{\lambda_j^{(1)}} \star f \big)(r_1 \cdot) \Big)(r_2 \cdot) \quad m = 2$$

And so on, until the desired depth. The output $s^m[f]$ is taken by averaging u[f] for every path q of depth m with one atom ϕ_m , and then subsampling:

$$s_m[\lambda_{i_m}^{(m)},...,\lambda_{i_1}^{(1)}]f := \phi_m \star u[\lambda_{i_m}^{(m)},...\lambda_{i_1}^{(1)}]f$$

If we write s without an index, this is the collection of outputs at all layers up to some desired M: 0, 1, ..., M.

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Previous Theory Translation

The first results on Scattering transforms were from [?] and his group. A more recent generalization for systems like shearlets, relates depth m to translation:

Theorem (Translation invariance, [?])

As long as the frames have upper frame bounds b_m satisfying $\max\{b_m, \gamma_m b_m/r_m^d\} \le 1$, the features at depth m satisfy:

$$S^m[T_c f] = T_{\frac{c}{r_1 \cdots r_{m-1}}} S^m[f]$$

Further if the output atoms satisfy $\widehat{\phi_m}|\omega| \le K$, this implies a bound on the difference in norm:

$$\|S^{m}[f] - S^{m}[T_{c}f]\| \le \frac{2\pi |c|K}{r_{1}\cdots r_{m}} \|f\|_{2}$$

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Previous Theory Non-uniform Translation and Modulation

In addition to this quasi-translation invariance, this generalized scattering transform is stable under space and frequency modulations:

$$F_{\tau,\omega}[f](x) = \mathrm{e}^{\mathrm{i}\omega(x)} f(x - \tau(x))$$

Theorem (Stability, [?])

If f is a band limited function, ω and τ are continuous, τ is once differentiable and $\|\nabla \tau\|_{\infty} \leq \frac{1}{2d}$, there is a C independent of S so that

$$\left\| S[f] - S[F_{\tau,\omega}[f]] \right\|_{2} \le C \|f\|_{2} \left(R\|\tau\|_{\infty} + \|\omega\|_{\infty} \right)$$

where the norm on S is just $\|\cdot\|_2$ on each output element

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

using a shearlet scattering transform, in addition to the previous result, we have that the coefficients decay at the same rate as the linear coefficients:

Theorem (Sparsity)

Assume that the input image f is a cartoon-like function, i.e. has the form $f = f_0 + f_1 \chi_B$, where f_i is smooth, and ∂B is a C^2 function, and that σ is smooth at all but one point. If we denote the reordering of S[f] by size as c_i , we have that

$$|c_i| \approx O\left(\frac{\log n}{n^{3/2}}\right)$$

We have implemented the Shattering Transform in Julia in the package COLLATINGTRANSFORM.JL (to be released in the next 6 months)

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Sonar Scattering

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Sonar Scattering

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

1D Classifier

Consider each 2D wavefield as a set of 1D signals, perform a scattering transform using Morlet Wavelets, and use the resulting vectors as the input to a linear classifier, in our case Sparse logistic regression.

Figure: The triangle, the sharkfin and observation paths

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Synthetic Experiments Material Discrimination

Figure: The ROC curve for detecting the material difference in a triangle, for speeds of sound $c_1 = 2000$ m/s and $c_1 = 2500$ m/s.

Synthetic Experiments Shape Discrimination

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Sonar Classification

Figure: The ROC curve for discriminating a shark-fin from a triangle where both have a speed of sound fixed at 2000m/s.

Real Experiments UXO Detection

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

Sonar Classification

Figure: The ROC curve for detecting UXOs. The scattering transform has two layers, with quality factors $Q_1 = Q_2 = 8$

Acknowledgements

- ONR Grants: N00014-12-1-0177; N00014-16-1-2255
- Vincent Bodin (former intern with Saito, responsible for initial database code)
- Jim Bremer and Ian Sammis (UC Davis, wrote the fast Helmholtz solver)
- Bradley Marchand
- Frank Crosby, Julia Gazagnaire (NSWC-PCD, FL, real dataset)
- GLMNET (T. Hastie and his group)
 - Simon Kornblith for his Julia wrapper for the fortran $\ensuremath{\mathtt{GLMNET}}$

The Shattering Transform

David Weber and Naoki Saito

Signal Invariants and Edge detection

Scattering Transform

Shattering Transform

References I

Amari, S. (1968).

Invariant structures of signal and feature space in pattern recognition problems.

RAAG Memoirs, 4(1-2):553-566.

Kutyniok, G. and Labate, D., editors (2012). *Shearlets - Multiscale Analysis for Multivariate Data.* Applied and Numerical Harmonic Analysis. Birkhäuser Basel.

Mallat, S. (2012).

Group invariant scattering.

Comm. Pure Appl. Math., 65(10):1331-1398.

Naoki Saito, D. W. (2017).

Underwater object classification using scattering transform of sonar signals.

The Shattering Transform

David Weber and Naoki Saito

Otsu, O. (1973).

An invariant theory of linear functionals as linear feature extractors.

Bulletin of the Electrotechnical Laboratory, 37(10):893–913.

Wiatowski, T. and Bölcskei, H. (2015).

Deep convolutional neural networks based on semi-discrete frames. IEEE Int. Symp. on Info. Theory pages 1212–1216.

The Shattering Transform

David Weber and Naoki Saito

Synthetic Experiments Setup Description

We use Mallat's framework with Morlet Wavelets, and compare with the absolute value of the Fourier transform (AVFT). We use two scattering transforms:

Туре	Q_1	Q_2	Q_3
Finer	8	8	1
Coarser	8	4	4

The Shattering Transform

David Weber and Naoki Saito

- Each signal is normalized so the maximum amplitude is 1
- White Gaussian noise is added to get average SNR is about 5dB.
- Multiclass logistic regression with Lasso (via GLMNET) is used as a feature extractor and a classifier.
- Perform 10-fold cross validation, i.e., repeat the classification 10 times by randomly splitting the whole dataset into training and test sets with 50/50.