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The fundamental claim of the scattering transform is that Scattering
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Convolutional Neural Networks

> (j-1) =(i—
General Neural net a’ :a(W.(] ). au 1)) :
L L David Weber

Convolutional Neural net a{(k) = R[U(Wi(]_l) * Ei(j_l)(k))] SESSRESSIES

Signal Invariants
Input layer (51) 4 feacure maps and Edge
detection

convolution layer sub-sampling layer convelution layer sub-sampling layer | fully connecced MLP
1 1 pling laye | aye 1 pling layer | fully ]

FIgLI €. From http://deeplearning.net/tutorial /lenet.html

Here a/ is the set of coefficients in layer j, o is a nonlinearity
such as |-| or ReLU, and R is a subsampling operator.
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[?] and [?] demonstrated that only trivial linear features are
absolutely invariant to even just translation, so they use relative

invariance of feature extractor p:
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Signal Invariants

How to construct a feature extractor that is invariant to
task-irrelevant deformations in the data? Some examples:
. David Weber
Translation T fl=f(x-0¢) el NEa Cete
Modulation | My[f]=e*!f(x) o
. ignal Invariants
Scaling Zalf1 = f(*a) S
Amplitude Aglfl=af(x) dlsieeiiien
[?] and [?] demonstrated that only trivial linear features are
absolutely invariant to even just translation, so they use relative
invariance of feature extractor p:

plT:fl=n(c)plf]

They establish that the only linear feature extractors p[f1 = (f, p}
that are relatively invariant w.r.t. both amplitude and translation
deformations are Fourier-Laplace type, i.e. for some z € C?

/f(x) ce”* dx
Rd
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Edge detection & local features

Fourier coefficients have a couple of problems:

* Detects global features, rather than local L
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* Slow decay rate for signals with sharp edges, e.g. images

Loosening the translation invariance further, we have translation i‘fi"‘"E'd'g";’a”a"“
covariance: p[T.f1= Tcplf], which implies a convolutional filter CECEEET
plTcf1=gp* f. Many examples adapted to address both of the

above, e.g. Wavelets, Curvelets, Shearlets.
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Shearlets

A particularly useful class of edge detectors for = 2D data,
the filters are indexed by shearing, scale, location and cone:

Alf1=*), f*xyix)
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Shearlet Sparsity of cartoon-like images

Shearlets use few coefficients to represent cartoon-like images

Feyr,1,2 f+4210 ¢ David Weber
and Naoki Saito
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Decay rate of order 1°g3(,f), which is the optimal! decay rate

across all recoverable linear transforms. See [?] for more
details.

1. modulo the logn




Generalized Scattering Transform
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A single propagating layer u[q;]f of the generalized scattering
transform is a vector consisting of semi-discrete shift invariant frame
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with Lipschitz constant y,;, and a subsampling factor rp; = 1.Putting
together k indices in a path g = (Agm),...,ﬂtg)) gives the propagating
m
value at layer m:

Scattering
ulA; ]f d/z (1[/1[. *f)(rl') m=1 Transform
"

1
un?, MU]f_ 7 (‘VN)* oy * ) i) m=2
1

And so on, until the deswed depth. The output s™[f] is taken by
averaging u(f] for every path g of depth m with one atom ¢, and
then subsampling:

s, A1 fi=pm x ™, A1

If we write s without an index, this is the collection of outputs at all
layers up to some desired M: 0,1,..., M.



Generalized Scattering Transform
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Previous Theory

Translation

The first results on Scattering transforms were from [?] and
his group. A more recent generalization for systems like David Weber
shearlets, relates depth m to translation: SIS RS

Theorem (Translation invariance, [?])

As long as the frames have upper frame bounds by, satisfying | [Sai:
maxi{b,,, Yymbnlri} <1, the features at depth m satisfy: Jansenm

S™Tefl=T_c_S™If]

T

Further if the output atoms satisfy ¢,|lw| < K, this implies a
bound on the difference in norm:

21|c|K
rl e rm

IS™1f1=S"[Tcf1ll < £l




Previous Theory

Non-uniform Translation and Modulation

In addition to this quasi-translation invariance, this
generalized scattering transform is stable under space and SNEPTP
frequency modulations: SIS RESRESEES

Frolf1(x) = € f(x—1(x))

Scattering
Transform

Theorem (Stability, [?])
If f is a band limited function, w and T are continuous, T is
once differentiable and | V7| < ﬁ, there is a C independent
of S so that

| st1-8[Frolf] ||2 < Cllfll2(RITlloo + l0lloo)

where the norm on S is just |-l on each output element




Shattering transform

using a shearlet scattering transform, in addition to the
previous result, we have that the coefficients decay at the
same rate as the linear coefficients:

Theorem (Sparsity)

Assume that the input image f is a cartoon-like function, i.e.
has the form f = fo+ fixp, where f; is smooth, and 0B is a
C? function, and that o is smooth at all but one point. If we
denote the reordering of S[f] by size as c;, we have that

owr

We have implemented the Shattering Transform in Julia in the
package COLLATINGTRANSFORM. JL (to be released in the next 6
months)
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Sonar Scattering
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Sonar Scattering
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1D Classifier

Consider each 2D wavefield as a set of 1D signals, perform a
scattering transform using Morlet Wavelets, and use the David Weber
resulting vectors as the input to a linear classifier, in our case TR
Sparse logistic regression.
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Figure: The triangle, the sharkfin and observation paths



Synthetic Experiments

Material Discrimination

o Comparing Material Detection for a Triangle
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Figure: The ROC curve for detecting the material difference in a
triangle, for speeds of sound ¢; =2000m/s and ¢; =2500m/s.



Synthetic Experiments

Shape Discrimination

o Comparing Triangle/Sharkfin discrimination
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Figure: The ROC curve for discriminating a shark-fin from a
triangle where both have a speed of sound fixed at 2000m/s.



Real Experiments

UXO Detection

Comparing UXO detection
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Figure: The ROC curve for detecting UXOs. The scattering
transform has two layers, with quality factors Q; = Q, =8
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Synthetic Experiments

Setup Description

We use Mallat's framework with Morlet Wavelets, and
compare with the absolute value of the Fourier transform

David Weber

(AVFT). We use two scattering transforms: and Naoki Saito
Type || Q1| Q| Qs
Finer 8 8 1
Coarser 8 4 4

* Each signal is normalized so the maximum amplitude is 1

* White Gaussian noise is added to get average SNR is
about 5dB.

* Multiclass logistic regression with Lasso (via GLMNET )
is used as a feature extractor and a classifier.

* Perform 10-fold cross validation, i.e., repeat the
classification 10 times by randomly splitting the whole
dataset into training and test sets with 50/50.

[?]



	Signal Invariants and Edge detection
	Scattering Transform
	Shattering Transform
	Sonar Classification
	Appendix

