David Weber

Resume

EMAIL: dsweber2@protonmail.com(preferred), dsweber@math.ucdavis.edu

WEBSITE: http://dsweber2.github.io/ GITHUB: https://github.com/dsweber2

LOCATION: Davis, CA
PHONE: (on request)

Qualification Summary

APPLIED MATHEMATICS Ph.D. (March 2022) Extensive image and signal processing experience using both computational and analytic tools. Skilled coder in Julia and Python. Experience with diverse signal processing problem domains.

Education		General Skills	
Mar. 2022	University of California Davis	Programming	Julia, LaTeX, Python
	Doctor of Philosophy	LANGUAGES	MATLAB, Fortran
	Applied Mathematics		C, Mathematica, Java
May 2014	University of Wisconsin Madison	PROGRAMMING	Julia: Flux, MLJ
	Bachelors of Science	Frameworks	Python: Tensorflow,
	Mathematics Honors in the Major		Scikitlearn,
	Physics		PyTorch
	Computer Science	Tools	Bash, Slurm, git

Research Experience

DEC 2022 Title: On Interpreting Sonar Data Using the Scattering Transform classified ocean floor objects such as unexploded ordinance using the Scattering Transform	orm	
classified ocean floor objects such as unexploded ordinance using the Scattering Transf	orm	
crassing occasion noor objects stem as unexplored ordinance using the seastering framer		
wrote julia packages to perform differentiable parallel and GPU Scattering Transforms		
adapted Fortran library to generate synthetic sonar examples		
used julia autodiff to generate interpretable examples of used Scattering Transform fea	ures	
June 2018- Machine Learning Internship at Bell Labs		
SEPT. 2018 examined the role of depth in convolutional neural networks		
Tensorflow based NN experiments, computing mutual information		
Theoretical examination of complexity with depth		
Aug. 2016- Graduate student researcher: Closed-Loop phase-locked Stimulation	Graduate student researcher: Closed-Loop phase-locked Stimulation	
JUNE 2018 collaborated with a team of 10 graduate students and professors	collaborated with a team of 10 graduate students and professors	
developed matlab real-time phase estimation methods in a high noise environment		
for use in brain stimulation techniques		
May 2013- Undergraduate Research at University of Wisconsin		
July 2013 Madison		
Collaborated with a team of 4 graduate and undergraduate students		
characterized solutions to KPP-reaction diffusion equation		
Feb. 2012- Collaborative Undergraduate Research Lab		
May 2012 Studied elliptic curves over finite fields		
worked with a team of 3 undergraduate students		
determined statistical behavior based on computational sampling		

David Weber

Resume

Posters & Presentations

Dec. 2019	Talk at the Bay Area Scientific Computing Day	
	The Shattering Transform: formalizing convolutional networks to analyze few example raw	
	sonar data	
Nov. 2019	Poster at DeepMath2019	
	The collating transform: bridging the gap between the scattering transform and CNNs	
Nov. 2018	Talk at the Oberwolfach Seminar on the Mathematics of Deep Learning	
	Underwater Object Classification Using Scattering Transform of Sonar	
Aug. 2017	Talk at the 18th Wavelets and Sparsity SPIE conference	
	presentation accompanying the conference proceeding below	

Publications

- Graham, Cole, Tau Shean Lim, Andrew Ma, and David Weber. 2018. "Existence and Non-Existence of Transition Fronts in Mixed Ignition-Monostable Media." Nonlinearity 31 (2). IOP Publishing:651.
- Naoki Saito & David Weber *Underwater object classification using scattering transform of sonar signals*, Proc. SPIE 8138, Wavelets and Sparsity XVII, 103940K (24 August 2017)
- W. H. Chak, N. Saito and D. Weber, "The Scattering Transform Network with Generalized Morse Wavelets and its Application to Music Genre Classification", 2022 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), 2022, pp. 25-30.

Leadership

Sept 2018 -	GGAM Graduate Student Representative
June 2020	Represent the graduate students on the graduate group in applied mathematics executive committee
Oct 2017 -	Student-run Math and Applied Math Seminar, UC Davis
June 2019	Co-organized widely attended weekly seminar for graduate student presentations
Nov 2015	Davis Math Conference
	Co-organized a 1 day conference for Davis mathematicians
Oct 2015 -	GSA Applied Mathematics General Assembly Representative
June 2017	Represented the Applied Math Graduate students in the Graduate Student Association General Assembly

Teaching Experience

Fall 2014-Spring 2021 | Calculus Teaching Assistant, 11 quarters