Utilities
ContinuousWavelets.getMeanFreq
— FunctiongetMeanFreq(sc::stFlux{1}, δt=1000)
Get a list of the mean frequencies for the filter bank in each layer. The averaging filter is last, and gives the mean frequency of the positive frequency only. Note that δt
gives the sampling rate for the input only, and that it decreases at each subsequent layer at the rate implied by the subsampling in sc
.
julia> using ScatteringTransform
julia> St = scatteringTransform((1024,1,1),2)
stFlux{2, Nd=1, filters=[15], σ = abs, batchSize = 1, normalize = true}
julia> f1, f2, f3 = getMeanFreq(St);
julia> f1'
1×16 adjoint(::Vector{Float64}) with eltype Float64:
7.70368 54.4302 78.7967 … 315.712 338.416 18.6697
julia> f2'
1×15 adjoint(::Vector{Float64}) with eltype Float64:
10.8253 64.1205 89.7788 … 296.729 317.265 22.1889
ScatteringTransform.getWavelets
— FunctiongetWavelets(sc::stFlux; spaceDomain=false) -> wave1, wave2, wave3, ...
Get the wavelets used in each layer. If spaceDomain
is true
, then it will also convert the filters from the stored positive Fourier representation to a space version.
ScatteringTransform.depth
— Functiondepth(s::scatteringTransform{Dim,Depth})
given a scattering transform, return the number of layers Depth
.
Base.ndims
— Functionndims(s::scatteringTransform{D})
given a scattering transform s
, return the number of layers Depth
.
ndims(sct::Scattered)
return the input dimension size (also given by sct.k
)
ndims(r::MaxPool{N,M})
ndims(r::MeanPool{N,M})
return the dimension N
of the input signal
Internal Utilities
ScatteringTransform.batchOff
— FunctionbatchOff(stack, x, batchSize)
transform x
using stack
, but where x
and stack
may have different batch sizes (the final dimension).
ScatteringTransform.normalize
— Functionnormalize(x, Nd) -> normedX
normalize x
over the dimensions Nd
through ndims(x)-1
. For example, if Nd=2
, and x
is 4D, then norm(normedX[:,:,:,j], 2) ≈ size(normedX,3)
.
ScatteringTransform.processArgs
— FunctionprocessArgs(m, varargs) -> listVargs
Go from arguments given to the scattering transform constructor to those for the wavelet or frame transform. listVargs
is a list of length m
of one argument from each of vargs, with insufficiently long entries filled in by repeating the last value. For a list of these arguments, see the documentation for stFlux
.
Examples
julia> using ContinuousWavelets, ScatteringTransform
julia> varargs = ( :boundary => PerBoundary(), :frameBound => [1, 1], :normalization => (Inf, Inf))
(:boundary => PerBoundary(), :frameBound => [1, 1], :normalization => (Inf, Inf))
julia> varargs
(:boundary => PerBoundary(), :frameBound => [1, 1], :normalization => (Inf, Inf))
julia> listVargs = ScatteringTransform.processArgs(3,varargs)
(Base.Pairs{Int64, Pair{Symbol}, Base.OneTo{Int64}, Tuple{Pair{Symbol, ContinuousWavelets.PerBoundary}, Pair{Symbol, Vector{Int64}}, Pair{Symbol, Tuple{Float64, Float64}}}}(1 => (:boundary => PerBoundary()), 2 => (:frameBound => [1, 1]), 3 => (:normalization => (Inf, Inf))), Base.Pairs{Int64, Pair{Symbol}, Base.OneTo{Int64}, Tuple{Pair{Symbol, ContinuousWavelets.PerBoundary}, Pair{Symbol, Vector{Int64}}, Pair{Symbol, Tuple{Float64, Float64}}}}(1 => (:boundary => PerBoundary()), 2 => (:frameBound => [1, 1]), 3 => (:normalization => (Inf, Inf))), Base.Pairs{Int64, Pair{Symbol}, Base.OneTo{Int64}, Tuple{Pair{Symbol, ContinuousWavelets.PerBoundary}, Pair{Symbol, Vector{Int64}}, Pair{Symbol, Tuple{Float64, Float64}}}}(1 => (:boundary => PerBoundary()), 2 => (:frameBound => [1, 1]), 3 => (:normalization => (Inf, Inf))))
julia> listVargs[1]
pairs(::Tuple{Pair{Symbol, ContinuousWavelets.PerBoundary}, Pair{Symbol, Vector{Int64}}, Pair{Symbol, Tuple{Float64, Float64}}}) with 3 entries:
1 => :boundary=>PerBoundary()
2 => :frameBound=>[1, 1]
3 => :normalization=>(Inf, Inf)
julia> listVargs[2]
pairs(::Tuple{Pair{Symbol, ContinuousWavelets.PerBoundary}, Pair{Symbol, Vector{Int64}}, Pair{Symbol, Tuple{Float64, Float64}}}) with 3 entries:
1 => :boundary=>PerBoundary()
2 => :frameBound=>[1, 1]
3 => :normalization=>(Inf, Inf)
julia> listVargs[3]
pairs(::Tuple{Pair{Symbol, ContinuousWavelets.PerBoundary}, Pair{Symbol, Vector{Int64}}, Pair{Symbol, Tuple{Float64, Float64}}}) with 3 entries:
1 => :boundary=>PerBoundary()
2 => :frameBound=>[1, 1]
3 => :normalization=>(Inf, Inf)
ScatteringTransform.getParameters
— FunctiongetParameters(st, s)
given a scatteringTransform
object and a symbol s
representing a possible keyword, e.g. :Q
, or :β
, return the value for this transform. It may be in st.settings
, or, if it is a default value, it is looked up.
ScatteringTransform.extractAddPadding
— FunctionextractAddPadding(x, adr, chunkSize, N)
From x
, extract the examples adr
in the last dimension, and make sure that it has a size of chunkSize
, padding if there are too few examples (this is to make sure the batch size matches).