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How to construct a feature extractor that is invariant to
task-irrelevant deformations in the data? Some examples:

Translation Tc [ f ] = f (x − c)
Modulation Mω[ f ] = eiωt f (x)
Scaling Sa[ f ] = f

(
x/a

)
Amplitude Aa[ f ] = a f (x)

[Amari, 1968] and [Otsu, 1973] demonstrated that only trivial
linear features are absolutely invariant to even just translation, so
they use relative invariance of feature extractor ρ:

ρ[Tc f ] = η(c)ρ[ f ]

They establish that the only linear feature extractors ρ[ f ] = 〈 f ,ρ〉
that are relatively invariant w.r.t. both amplitude and translation
deformations are Fourier-Laplace type, i.e. for some z ∈Cd

ˆ

Rd

f (x)c1ez·x dx
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Generalized Scattering Transform

A single propagating layer u[qi ] f of the generalized scattering
transform is a vector consisting of semi-discrete shift invariant
frame transforms ψ

λ(m)
i
? f indexed by λ(m)

i ∈Λm , a pointwise
nonlinearity σm with Lipschitz constant γm , and a subsampling
factor rm ≥ 1.

Putting together k indices in a path
q = (λ(m)

im
, . . . ,λ(1)

i1
) gives the propagating value at layer m:

u[λi ] f :=σ(
ψλi ? f

)
(r1·) m = 1

u[λ(2)
i ,λ(1)

j ] f :=σ
(
ψ
λ(2)

i
?σ

(
ψ
λ(1)

j
? f

)
(r1·)

)
(r2·) m = 2

And so on, until the desired depth. The output sm[ f ] is taken by
averaging u[ f ] for every path q of depth m with one atom φm ,
and then subsampling:

sm[λ(m)
im

, . . . ,λ(1)
i1

] f :=φm ?u[λ(m)
im

, . . .λ(1)
i1

] f

If we write s without an index, this is the collection of outputs at
all layers up to some desired M : 0,1, . . . , M .
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Generalized Scattering Transform

f(x)

u[q0]f

u[q0,0]f

...

u[q0,...,0]f u[qN,...,0]f

...

u[qN,0]f

...
...

u[qN ]f

u[q0,N ]f

...
...

u[qN,N ]f

...
...

u[q0,...,N ]f u[qN,...,N ]f

Layer m

...

Layer 2

Layer 1

Layer 0

s0f

s1[qN ]fs1[q0]f

s2[q0,0]f s2[qN,N ]f

sm[qN,...,0]f sm[q0,...,N ]fsm[q0,...,0]f

s2[q0,N ]f

sm[qN,...,N ]f

s2[qN,0]f

. . .

. . . . . .. . .

. . . . . .· · ·. . . . . .

The original scattering transform specifies that σm = | · |,
indexes by Λm = {a j/Qm h} j>−Jm ,h∈Hm for some rotation h in
the discrete rotation group Hm , subsamples only the output,
and has strong conditions on the parent wavelets ψ and φ.
Qm is the quality factor, which can vary by layer.
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Heuristics
Problems of the Fourier Transform

The Fourier transform is relatively invariant to translation, but it is
not relatively invariant to non-constant translation
Fτ[ f ] = f (t −τ(t )):

Let τ(t ) = st , with |s| < 1, and f (t ) = eiξtθ(t ), where θ is even and
O

(
e−x2)

then Tτ[ f ](t ) = f
(
(1− s)t

)
translates the central frequency

ξ to (1− s)ξ

‖T̂τ f − f̂ ‖ ∼ |s||ξ|‖θ‖ = |ξ|‖ f ‖‖∇τ‖∞
No universal bound for arbitrary ξ!

Frequency (ω)
0 10 20 30 40 50 60 70 80 90 100

0
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0.8

1

1.2

1.4

Effect of Nonlinear Translation on Frequency

f̂(ω) for ξ = 10

T̂τf(ω) for ξ = 10

f̂(ω) for ξ = 50

T̂τf(ω) for ξ = 50
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Heuristics
Wavelet Transform & Tτ

In the Fourier domain, a wavelet transform ψ j ? f
bandpasses the signal over windows whose width decreases
exponentially with j , so that both f and Tτ f are captured
within the same wavelet, regardless of ξ

Frequency (ω)
0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

1.5

2

ξ = 50 limited by ψ̂0

Scattering Wavelets

ψ̂0f̂(ω)

ψ̂0T̂τf(ω)

Effect of Nonlinear Translation on the Scattering Coefficients

Frequency (ω)
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ξ = 10 limited by ψ̂3

Scattering Wavelets

ψ̂3f̂(ω)

ψ̂3T̂τf(ω)

j = 0

j = 0j = 1j = 2. . .

. . . j = 2 j = 1

A Wavelet transform isn’t translation invariant, but it does
commute with the translation operator, i.e., if
W [ j ] f (n) = f ?ψ j ,n , then

W [ j ]Tc f (n) = TcW [ j ] f (n)

• Discrete Orthogonal Wavelet transform isn’t translation
invariant at all

• Stationary Wavelet transform is less sensitive to
translation

• Averaging after a Stationary Wavelet transform is more
invariant
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Heuristics
Scattering Transform comparison of f and Tτ f

Figure: Output of the Scattering Transform in the first layers for
ξ= 10 on the left and ξ= 50 on the right. Upper 2 rows are u for
the first and second layer, while the bottom 2 rows are the actual
outputs for the first and second layers
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Previous Theory
Translation

The first results on Scattering transforms were from
[Mallat, 2012] and his group. A more recent generalization
for “weakly admissible” frames, and not just wavelets, that
increasing the depth m increases translation invariance:

Theorem (Depth translation invariance,
[Wiatowski and Bölcskei, 2015])

As long as the frames have upper frame bounds bm satisfying
max{bm ,γm bm/r d

m} ≤ 1, the features at depth m satisfy:

Sm[Tc f ] = T c
r1 ···rm−1

Sm[ f ]
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Previous Theory
Non-uniform Translation and Modulation

In addition to this quasi-translation invariance, this
generalized scattering transform is stable under space and
frequency modulations:

Fτ,ω[ f ](x) = eiω(x) f
(
x −τ(x)

)
Theorem (Stability, [Wiatowski and Bölcskei, 2015])

If f is a band limited function, ω and τ are continuous, τ is
once differentiable and ‖∇τ‖∞ ≤ 1

2d , there is a C independent
of S so that∥∥∥S[ f ]−S

[
Fτ,ω[ f ]

]∥∥∥
2
≤C‖ f ‖2

(
R‖τ‖∞+‖ω‖∞

)
where the norm on S is just ‖·‖2 on each output element
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Sonar Scattering

Figure: The scattering off of a 155mm Howitzer shell
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1D Classifier

Consider each 2D wavefield as a set of 1D signals, perform a
scattering transform using Morlet Wavelets, and use the
resulting vectors as the input to a linear classifier, in our case
Sparse logistic regression.

Figure: The triangle, the sharkfin and observation paths
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Synthetic Experiments
Material Discrimination
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Comparing Material Detection for a Triangle

finer ST
coarser ST
AVFT

Figure: The ROC curve for detecting the material difference in a
triangle, for speeds of sound c1 = 2000m/s and c1 = 2500m/s.
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Synthetic Experiments
Shape Discrimination
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Comparing Triangle/Sharkfin discrimination

finer ST
coarser ST
AVFT

Figure: The ROC curve for discriminating a shark-fin from a
triangle where both have a speed of sound fixed at 2000m/s.
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Real Experiments
UXO Detection
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Comparing UXO detection
ST
AVFT

Figure: The ROC curve for detecting UXOs. The scattering
transform has two layers, with quality factors Q1 =Q2 = 8

15 / 17



Underwater
Object

Classification
Using Scattering
Transform of
Sonar Signals

David Weber
and Naoki Saito

Object and
Signal Invariants

Scattering
Transform

Sonar
Classification

Object Domain

Object Domain vs Signal Domain

(a) object domain (b) signal domain

The invariants discussed in the first part of the talk are in the
signal domain f (t − c). What happens when we move or
deform the triangle?

• Translation perpendicular to the rail
• Translation along rail
• Rotation
• Shape deformation
• Material deformation
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Examples

Figure: Various unexploded ordinance (UXO), replicas, and other
sea debris.
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Synthetic Experiments
Setup Description

We use Mallat’s framework with Morlet Wavelets, and
compare with the absolute value of the Fourier transform
(AVFT). We use two scattering transforms:

Type Q1 Q2 Q3

Finer 8 8 1
Coarser 8 4 4

• Each signal is normalized so the maximum amplitude is 1
• White Gaussian noise is added to get average SNR is
about 5dB.

• Multiclass logistic regression with Lasso (via Glmnet )
is used as a feature extractor and a classifier.

• Perform 10-fold cross validation, i.e., repeat the
classification 10 times by randomly splitting the whole
dataset into training and test sets with 50/50.
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