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Classification

x€ X is the input
e y€eY is the output, usually one of a finite number of

classes, e.g. A, B David Waber
e We have labelled training data (xi,y,-)i.\il Convolutional

Neural Networks

o We are looking for a function F: X — Y which will
classify new, unlabelled examples
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Neural Networks

First Second
Hidden Hidden
layer Lo layer Ly

P .\
7 — G W
%’

Tnput
layer L,

- ag‘)

./

i k

k=1

Output
layer Ly

® o

i nj-
a =0 (Z WU D ,G=D (WU D 50- 1))

David

Convolutional
Neural Networks



Convolutional Neural Networks

Instead of single values for each weight matrix we can output

an entire vector by using convolution instead of a dot

pI’Od uct: David Weber
Convolutional

a] (k) = U(W(]_l) * a(]_l) (k)) Neural Networks

Input layer (51} 4 feature maps
(C1) 4 feature maps (S2) 6 feature maps  (C2) 6 feature maps

. convolution layer | sub-samplinglayer | convolution layer | subesampling layer | fully connecced MLP)

Flgu €. From http://deeplearning.net/tutorial /lenet.html



Visual system, CNNs, & wavelets
A little history
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(b) The origin of CNN's, called the

(a) Example of Gabor functions in neocognitron[Fukushima, 1980]

modeling the simple cells of a cat from
[Jones and Palmer, 1987]



Visual system, CNNs, & wavelets
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Wavelets

Definition
A Wavelet Transform uses wavelets which are translations
and rescalings of a single mother wavelet y:

David Weber

\]
Wavelet and

Wn,j (x) = a_n/z'(l/(a_n(x - I’lb)) Fourier

Transforms

W[n,j]f=f*wnyj::/f(x)a‘"/zt//(a_”(x—nb))dx

where the mother wavelet y satisfies [yll, =1 and [ydx=0.

The restrictions on the mother wavelet second part is our
first example of an admissibility condition.



Morlet Wavelet

Example (Morlet Wavelet) £l

In the frequency domain, Morlet Wavelets are Gaussian
modulated sinusoids shifted from the origin to make them
almost analytic: Fourier

Transforms

Wavelet and

PN )] )]
e~ @W=0%/2 _ wlz)

Y() = c,ge'tz/z(ei“ —K(;) o P = 05( Kee

K¢ is used to make vy admissible, while c; is a normalization
factor.




Father and Mother wavelets

Paired with this mother wavelet is a “father wavelet”, or
scaling function ¢, which captures the remaining low

. . David Webe
frequency information. MRS

Definition
Wavelet and

Fourier
Transforms

The father wavelet ¢ (paired with mother wavelet ) is
specified by its Fourier Transform

B 1012
1p©&)% = / @dn
13

There is an admissibility condition on ¢ and ¥ such that the
set {Wj,n}(j eN* xZ forms an orthonormal basis of L?(R).



Signal invariants

The classes that are relevant in scattering problems have two
easily identifiable invariants: SRS
e Translation:

e An operator @ is translation invariant if avelet o
O(T.f)(1) = D(f)(2) for ceR, where Tc[f]= f(t-c) Fourier

Transforms



Signal invariants

The classes that are relevant in scattering problems have two
easily identifiable invariants: SRS
e Translation:

e An operator @ is translation invariant if avelet o
O(T.f)(1) = D(f)(2) for ceR, where Tc[f]= f(t-c) Fourier

Transforms

e Lipschitz continuity under small diffeomorphism

e An operator @ is Lipschitz-continuous relative to
operators of the form T [f1(t) = f(t—1(?) if VQEe R4,
there is a universal bound C for f e L?([R%)

1D(f) = @(Tr A)llze < ClFI(IVTlloo + I HT llco)



Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not
Lipschitz continuous under diffeomorphisms:

Wavelet and
Fourier
Transforms



Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not
Lipschitz continuous under diffeomorphisms:

Let 7(¢) = st, with |s| <1, and f(£) =e'*‘0(1), where 6 is even
and O(e™)

Wavelet and
Fourier
Transforms



Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not
Lipschitz continuous under diffeomorphisms:
Let 7(¢) = st, with |s| <1, and f(£) =e'*‘0(1), where 6 is even

2 David Weber
and O(e™)
then T;[f1() :f((l—s)t) translates the central frequency ¢ R
to (]' - S)g Wavelet and

Fourier

1T f = Fll ~ISHENON = 1EN FINIVT oo Transforms

No universal bound for arbitrary ¢!




Wavelet Transform & T;

In the fourier domain, a wavelet transform v * f bandpasses
the signal over windows whose width decreases exponentially
with j, so that both f and T, f are captured within the same
wavelet, regardless of ¢

Effect of Nonlinear Translati

David Weber

the Seattering Coefficients
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Wavelet Transform & T;

In the fourier domain, a wavelet transform v * f bandpasses
the signal over windows whose width decreases exponentially
with j, so that both f and T, f are captured within the same
wavelet, regardless of ¢

Effect of Nonlinear Translat

David Weber

1 the Scattering Coeficients

Wavelet and
;;;;; Fourier
I I Transforms
w :

A Wavelet transform isn’t translation invariant, but it does
commute with the translation operator, i.e. if

WIjlf(n) = f*x¥;n, then
WIjIT f(n) = T-W(jlf(n)



Scattering Transform

A single propagating layer U"[f] of the scattering transform is a
vector consisting of alternating convolution with wavelets

(W) = §(2”"°w) with scales ranging from the finest 0 to the e

coarsest J—1 and a modulus |-|: U]l[f]:=(|l//0*f|,...,|1[/]_1 * f1)

UZ1f1:=(lwo x lwo x fI, 11 % [yo * fll,..., [y -1 % [yo *

Fllyeveeons lyry1 1y % £1)
|6 % f(@)]
(@) Layer 0
S3lf) | % | * o ()| 6% * s (@)l .
bV Scattering
vif |f * vl - If % psal Layer 1 Transform
1) 16+ o * 0 = £ o+ Waa s tvon sl 6% a1 % -1 # 71

U3l o [0 + 11| 71 [0+ f I160 % [ -1 % £ 11 * 1 * 11l Layer 2

$311)

b ltbo x| lbo S| ldwlbga*| g1 f

uilf a_ax e fox £l [0 # -+« [a—1 % £+ Layer m
[0 x|~ [0 * fl---| . o lpgoa* £l

The output S}”[f] is taken by averaging every term of U]’"[f] with
the father wavelet ¢ corresponding to v, then subsampling.



Scattering Transform comparison of f and T;

Comparing the scattergrams for
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Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all fe I*(R fd) and ceR fd, if (w,¢) are admissible, then David Weber

lim 1S11= 8/ Te 1l =0

Scattering
Transform



Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all fe LZ(Rfd) and ce Rfd, if (w,¢) are admissible, then

David Weber

lim 1S11= 8/ Te 1l =0

Theorem (Lipschitz Continuity from [Mallat, 2012])

Scattering

Transform
For all compactly supported f € [(R%) satistying 4
X, U]mflll < oo and T € C2([R?) where |VT|o < % and
ITleo/ |7l < 27, there is a C such that:

[sizpi-spin], | S ups] (19e1 + 1H710)




Sonar Scattering
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Sonar Scattering

[RST

=

Sonar
Classification

Figure: Various unexploded ordinance (UXO), replicas, and other
sea debris




Sonar Scattering

David Weber

Relatve Cross Range (m)

25 30 35
% a8 2
Time (ms) Range (m)

Original signal Reconstruction



Sonar Scattering

David Weber
Convolutional
Neural Networks

Wavelet and
Fourier
Transforms
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Frames

The future?

Figure: The scattering off of a 155mm Howitzer shell




Sonar Scattering

David Weber
Convolutional
Neural Networks

Wavelet and
Fourier
Transforms

Scattering
Transform

Sonar
Classification

Frames

The future?

Figure: The 1D FFT of the shell




Sonar Scattering
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Figure: The Scattering transform of the shell




1D classifier

First plan: Consider each image as a set of 1D signals,
perform a scattering transform using Morlet Wavelets, and
use the resulting vectors as the input to a linear classifier, in David Weber
our case Sparse logistic regression.

Sonar
Classification

Figure: Central example from previous Data



Sparse Logistic Regression

Suppose we are trying to classify % € R into one of k classes.
Then the sparse linear classifier is
= David Weber

min —Zl(ynﬁo-"ﬁ )+ A1+ 1Bolh)

BoeRk, peRd gk N

where [ is the logit function:

L = T eﬁ0k+ﬁkxt
1(7i, Po+ B~ Xi) = ZJ’:klOg—T j
k=1 ﬁ0k+ﬁ i onar
[E]e ‘ (S:Iassification

Which arises by maximizing

~ max -logP(Y=7=00,...,1,...,0)|X = %;, Bo, B)
Bo€eRK, BeRY xRK

for the categorical distribution.



Sparse Logistic Regression

Why the ||-[l1? it induces sparsity:

David Weber

N\

Sonar
Classification

The scattering transform is highly redundant, so we should
only look for a subset of coefficients which are most
important to classify.



14-way classification is difficult

Accuracy
°
&

Class index

Figure: Averaging classification over 10 splits, standard error bars

(Note that random guessing 1/14 ~ 7.1%)

Accuracy for each class for the Scattering transform

Sonar
Classification



Real Experiments

Rocks and Dive units

Normalized data from BAYEX13, comparing 1 vs 1
classification

N classified as | b e Trainer Rock SRS

original
DEU Trainer 72.33+.6% 27.67%
Rock 30.22% 69.78 +£.63%
Table: AVFT results
classified as ) e it

.. DEU Trainer Rock

original F

DEU Trainer 98.91+.14% 1.09%
Rock 2.24% 97.76 +.1%

Table: Scattering Transform, with m =2 and quality factor Q=8



Real Experiments
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Figure: Various unexploded ordinance (UXO), replicas, and other
sea debris




Real Experiments

UXO'’s and random debris

Normalized data from BAYEX13, grouped into two classes

lassifi
. classified as UXO-group Others e
original David Weber
UXO-group 90.5+.079% 9.49%
Others 50.53% 49.47 + .26%
Table: AVFT results
I f d Sonar
. classitied as UXO-group Others Gleerifeetion
original -
UXO-group 94.55+.057% 5.45%
Others 24.28% 75.71+.19%

Table: Scattering Transform, with m =2 and quality factor Q=8



Synthetic Experiments
Helmholtz Equation Solver

Sonar
Classification

Figure: The triangle region and the observation paths



Synthetic Experiments

Helmholtz Equation Solver

Mono frequency equation:

Ay, + k% Uy,=0 inQ David Weber
Avy+Kvy=0 in Q°
Uy—Vy=§ onoQ
Oyl — 0y Uy =0yg  on 0Q
VX1 (01 — ik2) Ve (x) — 0 as | x| — oo

Sonar
Classification

where ki = 9/cpareria and ky = 9/cya.,. To approximate a more

realistic signal f(1) with finite support, use a discrete Fourier
N-1 .

series f(1) = ¥ s,e'?" for te [0, T]
n=0



Synthetic Experiments

Shape Detection

Perturb each signal by Gaussian noise with =0 and
0 =107° and try to discriminate the triangle from the Shark
Fin

David Weber

lassifi : :
. classified as Triangle Sharkfin
original
Triangle 69.59+.2% 30.41%
Sharkfin 31.23% 68.77 +.4%
Table: AVFT
Sonar
Classification
lassifi : : F
. classified as Triangle Sharkfin
original
Triangle 77.22+.5% 22.78%
Sharkfin 19.50% 80.50+.2%

Table: Scattering Transform, with m =3, and quality factor Q=1



Synthetic Experiments

Detecting material properties

Fix the geometry of a triangle, and then vary ¢, which
corresponds to different material properties.

- classified as 2000m/s 2500m/s David Weber
original
2000m/s 95.81+.2% 4.19%
2500m/s ‘ 5.16% 94.84 +.2%
Table: AVFT results
. Somar
. classified as | 5000mss  2500m/s S
original Frar
2000m/s 96.48 +.3% 3.52%
2500m/g 4.10% 95.9+.2%

Table: Scattering Transform results



Frame Bounds

Frame A set of functions {y}72, is a frame with frame
bounds A and B if for all fELz([R)

AlfI5 <Y Kf widl® < BIfII3
k=1

A frame is tight if A= B, and a Parseval Frame if A=B=1

Figure: The Mercedes frame

David Weber

Frames



Generalized Feature Extractor

A more recent result is that for “weakly admissible” frames,
and not just admissible wavelets, that increasing the depth m DEVIEREr
increases translation invariance:

Theorem (Depth translation invariance,

[Wiatowski and Bolcskei, 2015])

If R, is the subsampling rate layer n, as long as the frames
have frame bounds B, satisfying max{Bn,Banf} <1, the
features at depth m satisfy:

Sm[ch] = TR1 L Sm[f]

“Ryp—1




Generalized Feature Extractor

In addition to this quasi-translation invariance, this
generalized feature extractor is stable under space and
frequency modulations: SRR

Frolf1(x) =W f(x—1(x))

Theorem (Stability, [Wiatowski and Bolcskei, 2015])

if fe{f | supp (f) < Br(O)} (f is a band limited function), w
and T are continuous, T is once differentiable and '
IVTlloo <1/2d, There is a C independent of S so that F"""es

| stf1- S[Frl ]| < A2 (RITlo + T0llo)




Alternative explanations

* Reproducing Kernel Hilbert Spaces (RKHS): k] e
[Daniely et al., 2016]
Developed a framework where random initial weights are
shown to be close with high probability to a kernel
constructed based on the network’s skeleton.

* Manifold approximation [Cloninger et al., 2016]
Demonstrated that for all classification functions on
some smooth manifold (a subspace of R™), they
constructed a convolutional neural network that well

The future?

approximates it.



Where to go from here?

Fully implement and test a shearlet-based classifier on
synthetic and real data vtk el

e create a synthetic database of small changes in material
properties and geometry

o See if translation and deformation results can be found
in the object domain in the specific case of the
helmholtz equations.

e Implement a CNN with specific frame bounds in each
layer

The future?

e Explore the connection between the RKHS theory and
the fact that band-limited functions form a RKHS.
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