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Classi�cation

� x ∈ X is the input

� y ∈ Y is the output, usually one of a �nite number of
classes, e.g. A, B

� We have labelled training data (xi , yi )N
i=1

� We are looking for a function F : X → Y which will
classify new, unlabelled examples
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Neural Networks
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Convolutional Neural Networks

Instead of single values for each weight matrix we can output
an entire vector by using convolution instead of a dot
product:

a j (k) =σ(
~W ( j−1)?~a( j−1)(k)

)

Figure: From http://deeplearning.net/tutorial/lenet.html
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Visual system, CNNs, & wavelets

A little history

(a) Example of Gabor functions in
modeling the simple cells of a cat from
[Jones and Palmer, 1987]

(b) The origin of CNN's, called the
neocognitron[Fukushima, 1980]
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Visual system, CNNs, & wavelets

(a) The �lters from [Krizhevsky et al., 2012]

(b) Sparsi�ed frames for real images have similar structure to receptive �elds,
from [Bruno A Olshausen, 1996] 6 / 40
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Wavelets

De�nition

A Wavelet Transform uses wavelets which are translations
and rescalings of a single mother wavelet ψ:

ψn, j (x) = a−n/2ψ
(
a−n(x −nb)

)
W [n, j ] f = f ?ψn, j :=

�
f (x)a−n/2ψ

(
a−n(x −nb)

)
dx

where the mother wavelet ψ satis�es ‖ψ‖2 = 1 and
�
ψdx = 0.

The restrictions on the mother wavelet second part is our
�rst example of an admissibility condition.
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Morlet Wavelet

Example (Morlet Wavelet)

In the frequency domain, Morlet Wavelets are Gaussian

modulated sinusoids shifted from the origin to make them

almost analytic:

ψ(t ) = cξe−t 2/2
(
eiξt −κξ

)
⇔ ψ̂(ω) = cξ

(
e−(ω−ξ)2/2 −κξe−ω

2/2
)

κξ is used to make ψ admissible, while cξ is a normalization

factor.
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Father and Mother wavelets

Paired with this mother wavelet is a �father wavelet�, or
scaling function φ, which captures the remaining low
frequency information.

De�nition

The father wavelet φ (paired with mother wavelet ψ) is
speci�ed by its Fourier Transform

|φ̂(ξ)|2 =
∞�

ξ

|ψ̂(η)|2
η

dη

There is an admissibility condition on φ and ψ such that the
set

{
ψ j ,n

}
( j ,n)∈N+×Z forms an orthonormal basis of L2

(
R
)
.
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Signal invariants

The classes that are relevant in scattering problems have two
easily identi�able invariants:

� Translation:
� An operator Φ is translation invariant if
Φ(Tc f )(t ) =Φ( f )(t ) for c ∈R, where Tc [ f ] = f (t − c)

� Lipschitz continuity under small di�eomorphism
� An operator Φ is Lipschitz-continuous relative to
operators of the form Tτ[ f ](t ) = f (t −τ(t )) if ∀Ω ∈Rd ,
there is a universal bound C for f ∈ L2(Rd )

‖Φ( f )−Φ(Tτ f )‖H ≤C‖ f ‖(‖∇τ‖∞+‖Hτ‖∞
)
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Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not
Lipschitz continuous under di�eomorphisms:

Let τ(t ) = st , with |s| < 1, and f (t ) = eiξtθ(t ), where θ is even
and O

(
e−x2)

then Tτ[ f ](t ) = f
(
(1− s)t

)
translates the central frequency ξ

to (1− s)ξ

‖T̂τ f − f̂ ‖ ∼ |s||ξ|‖θ‖ = |ξ|‖ f ‖‖∇τ‖∞
No universal bound for arbitrary ξ!

Frequency (ω)
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Wavelet Transform & Tτ

In the fourier domain, a wavelet transform ψ j ? f bandpasses
the signal over windows whose width decreases exponentially
with j , so that both f and Tτ f are captured within the same
wavelet, regardless of ξ

Frequency (ω)
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Effect of Nonlinear Translation on the Scattering Coefficients
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j = 0

j = 0j = 1j = 2. . .
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A Wavelet transform isn't translation invariant, but it does
commute with the translation operator, i.e. if
W [ j ] f (n) = f ? ψ̂ j ,n , then

W [ j ]Tc f (n) = TcW [ j ] f (n)
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Scattering Transform

A single propagating layer U m
J [ f ] of the scattering transform is a

vector consisting of alternating convolution with wavelets
ψ̂ j (ω) = ψ̂(

2 j/Qω
)
with scales ranging from the �nest 0 to the

coarsest J −1 and a modulus | · |: U 1
J [ f ] :=(|ψ0? f |, . . . , |ψJ−1? f |)

U 2
J [ f ] :=(|ψ0? |ψ0? f ||, |ψ1? |ψ0? f ||, . . . , |ψJ−1? |ψ0?

f ||, . . . . . . , |ψJ−1? |ψJ−1? f ||)
U1
J1[f ]

S1
J [f ]

U2
J [f ]

S2
J [f ]

U2
J [f ]

S2
J [f ]

f(x)

|f ? ψ0|

|ψ0 ? |ψ0 ? f ||

...

|ψ0 ? | · · · |ψ0 ? f | · · · |
|ψJ−1 ? | · · · |ψ0 ? f | · · · |

...

|ψJ−1 ? |ψ0 ? f ||

...
...

|f ? ψJ−1|

|ψ0 ? |ψJ−1 ? f ||

...
...

|ψJ−1 ? |ψJ−1 ? f ||

...
...

|ψ0 ? | · · · |ψJ−1 ? f | · · · | Layer m

...

Layer 2

Layer 1

Layer 0

|ψJ−1 ? | · · · |ψJ−1 ? f |

|φ ? f(x)|

|φ ? |f ? ψJ−1(x)|||φ ? |f ? ψ0(x)||

|φ ? |ψ0 ? |ψ0 ? f || |φ ? |ψJ−1 ? |ψJ−1 ? f ||

|φ ? |ψJ−1 ? | · · · |ψ0 ? f| · · · | |φ ? |ψ0 ? | · · · |ψJ−1 ? f| · · · |

|φ ? |ψ0 ? | · · · |ψ0 ? f | · · · |

|φ ? |ψ0 ? |ψJ−1 ? f|||

|φ ? |ψJ−1 ? | · · · |ψJ−1 ? f |

|φ ? |ψJ−1 ? |ψ0 ? f|||

. . .

. . . . . .. . .

. . . . . .
· · ·. . . . . .

The output Sm
J [ f ] is taken by averaging every term of U m

J [ f ] with

the father wavelet φ corresponding to ψ, then subsampling.

13 / 40
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Scattering Transform comparison of f and Tτ f
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Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all f ∈ L2(R f d ) and c ∈ R f d , if (ψ,φ) are admissible, then

lim
J→−∞

‖S J [ f ]−S J [Tc f ]‖2 = 0

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported f ∈ L2
(
Rd

)
satisfying

‖∑m U m
J f ‖1 <∞ and τ ∈C 2(Rd ) where ‖∇τ‖∞ ≤ 1

2 and
‖τ‖∞/‖∇τ‖∞ ≤ 2J , there is a C such that:∥∥∥S J [Tτ f ]−S J [ f ]

∥∥∥
2
≤C

∥∥∥∑
m

U m
J f

∥∥∥
1

(
‖∇τ‖∞+‖Hτ‖∞

)

15 / 40



Theory and
Applications of
Scattering
Networks

David Weber

Convolutional
Neural Networks

Wavelet and
Fourier
Transforms

Scattering
Transform

Sonar
Classi�cation

Frames

The future?

Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all f ∈ L2(R f d ) and c ∈ R f d , if (ψ,φ) are admissible, then

lim
J→−∞

‖S J [ f ]−S J [Tc f ]‖2 = 0

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported f ∈ L2
(
Rd

)
satisfying

‖∑m U m
J f ‖1 <∞ and τ ∈C 2(Rd ) where ‖∇τ‖∞ ≤ 1

2 and
‖τ‖∞/‖∇τ‖∞ ≤ 2J , there is a C such that:∥∥∥S J [Tτ f ]−S J [ f ]

∥∥∥
2
≤C

∥∥∥∑
m

U m
J f

∥∥∥
1

(
‖∇τ‖∞+‖Hτ‖∞

)

15 / 40



Theory and
Applications of
Scattering
Networks

David Weber

Convolutional
Neural Networks

Wavelet and
Fourier
Transforms

Scattering
Transform

Sonar
Classi�cation

Frames

The future?

Sonar Scattering
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Sonar Scattering

Figure: Various unexploded ordinance (UXO), replicas, and other
sea debris
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Sonar Scattering

Original signal Reconstruction
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Sonar Scattering

Figure: The scattering o� of a 155mm Howitzer shell
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Sonar Scattering

Figure: The 1D FFT of the shell
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Sonar Scattering

Figure: The Scattering transform of the shell
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1D classi�er

First plan: Consider each image as a set of 1D signals,
perform a scattering transform using Morlet Wavelets, and
use the resulting vectors as the input to a linear classi�er, in
our case Sparse logistic regression.

Figure: Central example from previous Data

22 / 40
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Sparse Logistic Regression

Suppose we are trying to classify ~x ∈Rd into one of k classes.
Then the sparse linear classi�er is

min
~β0∈Rk ,β∈Rd×Rk

1

N

N∑
i=1

l (*yi ,β0 +βT~xi )+λ(||β||1 +‖~β0‖1
)

where l is the logit function:

l
(
~yi , ~β0 +βT~xi

)= K∑
k=1

yi k log
eβ0k+~βT

k ~xi

K∑̀
=1

eβ0k+~βT
k ~xi

Which arises by maximizing

max
~β0∈Rk ,β∈Rd×Rk

− logP
(
Y =~yi = (0, . . . ,1, . . . ,0)|X = ~xi ,~β0,β

)
for the categorical distribution.
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Sparse Logistic Regression

Why the ‖·‖1? it induces sparsity:

The scattering transform is highly redundant, so we should
only look for a subset of coe�cients which are most
important to classify.
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14-way classi�cation is di�cult

Figure: Averaging classi�cation over 10 splits, standard error bars
(Note that random guessing 1/14 ∼ 7.1%)
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Real Experiments

Rocks and Dive units

Normalized data from BAYEX13, comparing 1 vs 1
classi�cation
`````````````̀original

classi�ed as
DEU Trainer Rock

DEU Trainer 72.33± .6% 27.67%
Rock 30.22% 69.78± .63%

Table: AVFT results

`````````````̀original
classi�ed as

DEU Trainer Rock

DEU Trainer 98.91± .14% 1.09%
Rock 2.24% 97.76± .1%

Table: Scattering Transform, with m = 2 and quality factor Q = 8

26 / 40
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Real Experiments

Figure: Various unexploded ordinance (UXO), replicas, and other
sea debris
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Real Experiments

UXO's and random debris

Normalized data from BAYEX13, grouped into two classes
`````````````̀original

classi�ed as
UXO-group Others

UXO-group 90.5± .079% 9.49%
Others 50.53% 49.47± .26%

Table: AVFT results

`````````````̀original
classi�ed as

UXO-group Others

UXO-group 94.55± .057% 5.45%
Others 24.28% 75.71± .19%

Table: Scattering Transform, with m = 2 and quality factor Q = 8
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Synthetic Experiments

Helmholtz Equation Solver

Ω

Observation rail

Figure: The triangle region and the observation paths
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Synthetic Experiments

Helmholtz Equation Solver

Mono frequency equation:

∆uω+k2
1uω = 0 in Ω

∆vω+k2
2 vω = 0 in Ωc

uω− vω = g on ∂Ω

∂νuω−∂νvω = ∂νg on ∂Ω√
|x|(∂|x|− ik2

)
vω(x) → 0 as |x|→∞

where k1 = ω/cmater i al and k2 = ω/cw ater . To approximate a more
realistic signal f (t ) with �nite support, use a discrete Fourier

series f (t ) ≈
N−1∑
n=0

snei2π for t ∈ [0,T ]

30 / 40
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Synthetic Experiments

Shape Detection

Perturb each signal by Gaussian noise with µ= 0 and
σ= 10−5 and try to discriminate the triangle from the Shark
Fin
`````````````̀original

classi�ed as
Triangle Shark�n

Triangle 69.59± .2% 30.41%
Shark�n 31.23% 68.77± .4%

Table: AVFT

`````````````̀original
classi�ed as

Triangle Shark�n

Triangle 77.22± .5% 22.78%
Shark�n 19.50% 80.50± .2%

Table: Scattering Transform, with m = 3, and quality factor Q = 1
31 / 40
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Synthetic Experiments

Detecting material properties

Fix the geometry of a triangle, and then vary c, which
corresponds to di�erent material properties.
`````````````̀original

classi�ed as
2000m/s 2500m/s

2000m/s 95.81± .2% 4.19%
2500m/s 5.16% 94.84± .2%

Table: AVFT results

`````````````̀original
classi�ed as

2000m/s 2500m/s

2000m/s 96.48± .3% 3.52%
2500m/s 4.10% 95.9± .2%

Table: Scattering Transform results
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Frame Bounds

De�nition

Frame A set of functions {ψk }∞k=1 is a frame with frame
bounds A and B if for all f ∈ L2(R)

A‖ f ‖2
2 ≤

∞∑
k=1

|〈 f ,ψk〉|2 ≤ B‖ f ‖2
2

A frame is tight if A = B , and a Parseval Frame if A = B = 1

Figure: The Mercedes frame
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Generalized Feature Extractor

A more recent result is that for �weakly admissible� frames,
and not just admissible wavelets, that increasing the depth m
increases translation invariance:

Theorem (Depth translation invariance,
[Wiatowski and Bölcskei, 2015])

If Rn is the subsampling rate layer n, as long as the frames

have frame bounds Bn satisfying max{Bn ,BnRd
n } ≤ 1, the

features at depth m satisfy:

Sm[Tc f ] = T c
R1 ···Rm−1

Sm[ f ]
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Generalized Feature Extractor

In addition to this quasi-translation invariance, this
generalized feature extractor is stable under space and
frequency modulations:

Fτ,ω[ f ](x) = e2πiω(x) f
(
x −τ(x)

)
Theorem (Stability, [Wiatowski and Bolcskei, 2015])

if f ∈ {
f | supp (

f̂
)⊆ BR (0)

}
( f is a band limited function), ω

and τ are continuous, τ is once di�erentiable and

‖∇τ‖∞ ≤ 1/2d, There is a C independent of S so that∥∥∥S[ f ]−S
[
Fτ,ω[ f ]

]∥∥∥≤C‖ f ‖2
(
R‖τ‖∞+‖ω‖∞

)
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Alternative explanations

� Reproducing Kernel Hilbert Spaces (RKHS):
[Daniely et al., 2016]
Developed a framework where random initial weights are
shown to be close with high probability to a kernel
constructed based on the network's skeleton.

� Manifold approximation [Cloninger et al., 2016]
Demonstrated that for all classi�cation functions on
some smooth manifold (a subspace of Rm), they
constructed a convolutional neural network that well
approximates it.
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Where to go from here?

� Fully implement and test a shearlet-based classi�er on
synthetic and real data

� create a synthetic database of small changes in material
properties and geometry

� See if translation and deformation results can be found
in the object domain in the speci�c case of the
helmholtz equations.

� Implement a CNN with speci�c frame bounds in each
layer

� Explore the connection between the RKHS theory and
the fact that band-limited functions form a RKHS.
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