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Convolutional Neural Networks

Classification

@ x€ X is the input

@ yeY is the output, usually one of a finite number of classes, e.g. A, B

o We have labelled training data (x;,y:)Y,

@ We are looking for a function F: X — Y which will classify new,

unlabelled examples
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Convolutional Neural Networks

Neural Networks
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Convolutional Neural Networks

Convolutional Neural Networks

Instead of single values for each weight matrix we can output an entire
vector by using convolution instead of a dot product:

al (k) = a(WV™V % al=V (k)

(51) 4 fescure maps
(C1) 4 fescure maps (52) 6 feature maps  (C2) 6 feature maps

LB %™

Figure: From http://deeplearning.net/tutorial /lenet.html
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Visual system, CNNs, & wavelets

Figure: Sparsifying basis functions having similar structure to receptive fields,
from [Bruno A Olshausen, 1996]
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Wavelets

Definition
A Wavelet Transform uses wavelets which are translations and rescalings of
a single mother wavelet v:

Wn,j(x) = a_"/zw(a_"(x— nb))
W[n,j]f=f*wn’j::ff(x)a‘"’zt//(a_”(x—nb))dx

where the mother wavelet v satisfies |yl =1 and [y dx=0.

The restrictions on the mother wavelet second part is our first example of
an admissibility condition.
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Morlet Wavelet

Example (Morlet Wavelet)

In the frequency domain, Morlet Wavelets are Gaussian modulated
sinusoids shifted from the origin to make them almost analytic:

Y=o (e k) o Plor=efe @O o) ()

K¢ is used to make y admissible, while c¢ is a normalization factor.
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Wavelet and Fourier Transforms

Father and Mother wavelets

Paired with this mother wavelet is a “father wavelet”, or scaling function ¢,
which captures the remaining low frequency information.

Definition
The father wavelet ¢ (paired with mother wavelet v) is specified by its
Fourier Transform

17 12
B = f @dn
¢

There is an admissibility condition on ¢ and v such that the set
{Wjn}(j men <z forms an orthonormal basis of L*(R).
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Wavelet and Fourier Transforms

Signal invariants

The classes that are relevant in scattering problems have two easily
identifiable invariants:

@ Translation:

e An operator @ is translation invariant if ®(T,f)(1) = ®(f)(1) for ceR,
where T, [f]1= f(t—c¢)
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Wavelet and Fourier Transforms

Signal invariants

The classes that are relevant in scattering problems have two easily
identifiable invariants:
@ Translation:

e An operator @ is translation invariant if ®(T,f)(1) = ®(f)(1) for ceR,
where T, [f]1= f(t—c¢)
@ Lipschitz continuity under small diffeomorphism
e An operator @ is Lipschitz-continuous relative to operators of the form

T, 1f1(6) = f(t—1(1) if YQ€R?, there is a universal bound C for
f € L2(RY)

1D(f) = (T Az < CIAI(IVTlloo + I HT lloo) (2)

dsweber@math.ucdavis.edu (UC Davis) Formalizing Convolutional Neural Networ January 12, 2016 9/ 17



Wavelet and Fourier Transforms

Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not Lipschitz
continuous under diffeomorphisms:

. Effect of Nonlinear Translation on Frequency
T T T
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Wavelet and Fourier Transforms

Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not Lipschitz
continuous under diffeomorphisms:
Let 7(#) = st, with |s| <1, and f() = e*’(1), where 6 is even and O(e_xz)

Effect of Nonlinear Translation on Frequency
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Wavelet and Fourier Transforms

Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not Lipschitz
continuous under diffeomorphisms:

Let 7(#) = st, with |s| <1, and f() = e*’(1), where 6 is even and O(e_xz)
then T:[f1(2) = f((1—s)t) translates the central frequency ¢ to (1—s)¢&

T f = Fll ~ ISHENON = 1N IV lloo (3)

No universal bound for arbitrary ¢&!

Effect of Nonlinear Translation on Frequency
T T

I I I I I I I I I
) 10 20 20 0 50 60 70 80 % 100
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Wavelet Transform & T,
In the fourier domain, a wavelet transform 1 x f bandpasses the signal

over windows whose width decreases exponentially with j, so that both f
and T f are captured within the same wavelet, regardless of ¢

Effect of Nonlinear Translation on the Scattering Coefficients

11/ 17
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Wavelet and Fourier Transforms

Wavelet Transform & T,

In the fourier domain, a wavelet transform 1 x f bandpasses the signal
over windows whose width decreases exponentially with j, so that both f
and T f are captured within the same wavelet, regardless of ¢

Effect of Nonlinear Translation on th

cattering Coefficients

A Wavelet transform isn’t translation invariant, but it does commute with
the translation operator, i.e. if W[j]f(n) =f*1'/7j,n, then

Wi Tef(n) = T.WIjlf(n)
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Scattering Transform

A single propagating layer U;"[f] of the scattering transform is a vector consisting

of alternating convolution with wavelets ¥ ; (@) = §/(2"%w) with scales ranging
from the finest 0 to the coarsest J—1 and a modulus |-|:

U Lf1=(1wo * £l Iy -1 % £1)

2 ——
UF1f1:=(lwo * lwo* fIl Iy * lwo * fll,.., [y -1 xlwo x fll,...... ikl * fl)
Io*f(f)\
f(l) Layer 0
il Rl / \mvw, @Il
uif) ol I %1651l Layer 1
$314) 16 % [0 * o * £1] TR “’,H““ oot \«ww: ——l
Ujlfl [oxlox fIl -+ |y 1*\1bn*fH s o lbaoax FIl e o ,*wl 1% fll Layer 2
lexlwgqgl--lwg*fl---| / \ / \ / \ l@*lwgwl - lwg_y*fl---|
S31f) : :
Bx okl lrox f1--] 6% g1+ b 5 f
v21) AN [ga %]+l x £+ [ox |-+ [z fl---1 /" Layerm
oo x |-+~ [apo x Fl--o] R B e ]

The output S7'[f] is taken by averaging every term of U;"[f] with the father
wavelet ¢ corresponding to v, then subsampling.
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catteri ansform

Scattering Transform comparison of f and T, f
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Scattering Transform

Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all f € I>(Rf%) and ce Rf?, if (y,¢) are admissible, then

]Er_rloollsj[f]—S][ch]||2=0 (4)

as the scale goes to infinite resolution, the scattering transform is
translation invariant. In addition it preserves the total energy
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Scattering Transform

Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])
For all f € I>(Rf%) and ce Rf?, if (y,¢) are admissible, then

]Er_rloollsj[f]—S][chHIz:O (4)

as the scale goes to infinite resolution, the scattering transform is
translation invariant. In addition it preserves the total energy

Theorem (Energy conservation from [Mallat, 2012])
For all fe L2(RY), if (w, ) are admissible, then

1£l2 =S 1f1l2 where Sj1f1:=(SILf1, S}F), ..., SP'LfD,-.. ),

IS IF115:= " IST 13
m=0
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Scattering Transform

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported f € [*(R?) satisfying | ¥, U fll1 <oo and

7€ C2(RY) where VTl < 3 and I/ |1l <27, there is a C such that:

|sizen-sin|, =c| S upr| (1971 + 1E7I0) (5)

y
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Scattering Transform

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported f € [*(R?) satisfying | ¥, U fll1 <oo and
7€ C2(R?) where VT oo < % and Itls/ V1), <27/, there is a C such that:

|sizen-sin|, =c| S upr| (1971 + 1E7I0) (5)

y

A more recent result is that for general frames, and not just admissible
wavelets, that increasing the depth m increases translation invariance:

Theorem (Depth translation invariance, [Wiatowski and Bdlcskei, 2015])

If Ry, is the subsampling rate layer n, as long as the wavelets have frame
bounds B,, satisfying max{Bn,B,,RZ} <1, the features at depth m satisty:

SlTefl=T,_;_Smlf] (6)

= Ryp—1
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