Formalizing Convolutional Neural Networks: Classification by alternating change of bases and simple nonlinearities

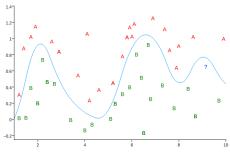
David Weber

Department of Mathematics University of California, Davis

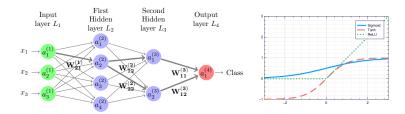
Davis Math Conference UC Davis January 12, 2016

Classification

- $x \in X$ is the input
- $y \in Y$ is the output, usually one of a finite number of classes, e.g. A, B
- We have labelled training data $(x_i, y_i)_{i=1}^N$
- We are looking for a function $F: X \to Y$ which will classify new, unlabelled examples



Neural Networks



$$a_i^j = \sigma \Big(\sum_{k=1}^{n_{j-1}} W_{ik}^{(j-1)} a_k^{(j-1)} \Big) = \sigma \Big(\vec{W}_i^{(j-1)} \cdot \vec{a}^{(j-1)} \Big)$$

Convolutional Neural Networks

Instead of single values for each weight matrix we can output an entire vector by using convolution instead of a dot product:

$$a^{j}(k) = \sigma(\vec{W}^{(j-1)} \star \vec{a}^{(j-1)}(k))$$

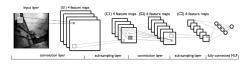


Figure: From http://deeplearning.net/tutorial/lenet.html

Visual system, CNNs, & wavelets

Figure: The filters from [Krizhevsky et al., 2012]

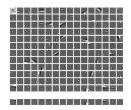


Figure: Sparsifying basis functions having similar structure to receptive fields, from [Bruno A Olshausen, 1996]

Wavelets

Definition

A Wavelet Transform uses wavelets which are translations and rescalings of a single mother wavelet ψ :

$$\psi_{n,j}(x) = a^{-n/2} \psi(a^{-n}(x - nb))$$

$$W[n,j]f = f \star \overline{\psi}_{n,j} := \int f(x) a^{-n/2} \psi(a^{-n}(x - nb)) dx$$

where the mother wavelet ψ satisfies $\|\psi\|_2 = 1$ and $\int \psi \, dx = 0$.

The restrictions on the mother wavelet second part is our first example of an admissibility condition.

Morlet Wavelet

Example (Morlet Wavelet)

In the frequency domain, Morlet Wavelets are Gaussian modulated sinusoids shifted from the origin to make them almost analytic:

$$\psi(t) = c_{\xi} \mathrm{e}^{-t^{2}/2} \left(\mathrm{e}^{\mathrm{i}\xi t} - \kappa_{\xi} \right) \quad \Leftrightarrow \quad \widehat{\psi}(\omega) = c_{\xi} \left(\mathrm{e}^{-(\omega - \xi)^{2}/2} - \kappa_{\xi} \mathrm{e}^{-\omega^{2}/2} \right) \tag{1}$$

 κ_{ξ} is used to make ψ admissible, while c_{ξ} is a normalization factor.

Father and Mother wavelets

Paired with this mother wavelet is a "father wavelet", or scaling function ϕ , which captures the remaining low frequency information.

Definition

The father wavelet ϕ (paired with mother wavelet ψ) is specified by its Fourier Transform

$$|\widehat{\phi}(\xi)|^2 = \int_{\xi}^{\infty} \frac{|\widehat{\psi}(\eta)|^2}{\eta} \, \mathrm{d}\eta$$

There is an admissibility condition on ϕ and ψ such that the set $\{\psi_{j,n}\}_{(j,n)\in\mathbb{N}^+\times\mathbb{Z}}$ forms an orthonormal basis of $L^2(\mathbb{R})$.

Signal invariants

The classes that are relevant in scattering problems have two easily identifiable invariants:

- Translation:
 - An operator Φ is translation invariant if $\Phi(T_c f)(t) = \Phi(f)(t)$ for $c \in \mathbb{R}$, where $T_c[f] = f(t-c)$
- Lipschitz continuity under small diffeomorphism
 - An operator Φ is Lipschitz-continuous relative to operators of the form $T_{\tau}[f](t) = f(t \tau(t))$ if $\forall \Omega \in \mathbb{R}^d$, there is a universal bound C for $f \in L^2(\mathbb{R}^d)$

$$\|\Phi(f) - \Phi(T_{\tau}f)\|_{\mathcal{H}} \le C\|f\| \left(\|\nabla \tau\|_{\infty} + \|H\tau\|_{\infty} \right) \tag{2}$$

Signal invariants

The classes that are relevant in scattering problems have two easily identifiable invariants:

- Translation:
 - An operator Φ is translation invariant if $\Phi(T_c f)(t) = \Phi(f)(t)$ for $c \in \mathbb{R}$, where $T_c[f] = f(t-c)$
- Lipschitz continuity under small diffeomorphism
 - An operator Φ is Lipschitz-continuous relative to operators of the form $T_{\tau}[f](t) = f(t \tau(t))$ if $\forall \Omega \in \mathbb{R}^d$, there is a universal bound C for $f \in L^2(\mathbb{R}^d)$

$$\|\Phi(f) - \Phi(T_{\tau}f)\|_{\mathcal{H}} \le C\|f\| \left(\|\nabla \tau\|_{\infty} + \|H\tau\|_{\infty}\right) \tag{2}$$

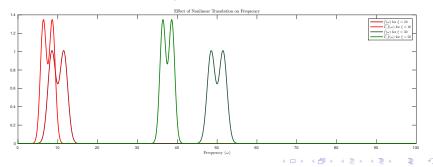
Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not Lipschitz continuous under diffeomorphisms:

Let $\tau(t) = st$, with |s| < 1, and $f(t) = \mathrm{e}^{\mathrm{i}\xi\,t}\theta(t)$, where θ is even and $O(\mathrm{e}^{-x^2})$ then $T_\tau[f](t) = f((1-s)t)$ translates the central frequency ξ to $(1-s)\xi$

$$\|\widehat{T_{\tau}f} - \widehat{f}\| \sim |s||\xi| \|\theta\| = |\xi| \|f\| \|\nabla \tau\|_{\infty}$$
 (3)

No universal bound for arbitrary ξ !



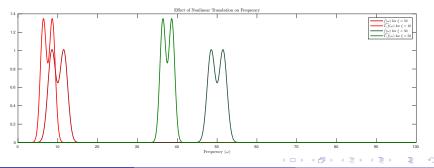
Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not Lipschitz continuous under diffeomorphisms:

Let
$$\tau(t) = st$$
, with $|s| < 1$, and $f(t) = \mathrm{e}^{\mathrm{i}\xi t}\theta(t)$, where θ is even and $O(\mathrm{e}^{-x^2})$ then $T_\tau[f](t) = f\left((1-s)t\right)$ translates the central frequency ξ to $(1-s)\xi$

$$\|\widehat{T_{\tau}f} - \widehat{f}\| \sim |s||\xi| \|\theta\| = |\xi| \|f\| \|\nabla \tau\|_{\infty}$$
(3)

No universal bound for arbitrary $\xi!$



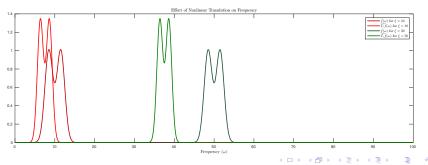
Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not Lipschitz continuous under diffeomorphisms:

Let $\tau(t)=st$, with |s|<1, and $f(t)=\mathrm{e}^{\mathrm{i}\xi t}\theta(t)$, where θ is even and $O(\mathrm{e}^{-x^2})$ then $T_{\tau}[f](t)=f\big((1-s)t\big)$ translates the central frequency ξ to $(1-s)\xi$

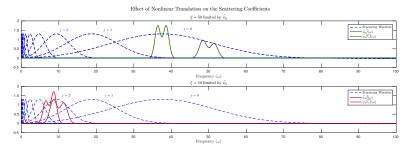
$$\|\widehat{T_{\tau}f} - \widehat{f}\| \sim |s||\xi| \|\theta\| = |\xi| \|f\| \|\nabla \tau\|_{\infty}$$
 (3)

No universal bound for arbitrary ξ !



Wavelet Transform & T_{τ}

In the fourier domain, a wavelet transform $\psi_j \star f$ bandpasses the signal over windows whose width decreases exponentially with j, so that both f and $T_\tau f$ are captured within the same wavelet, regardless of ξ

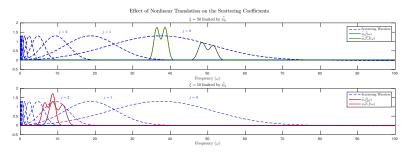


A Wavelet transform isn't translation invariant, but it does commute with the translation operator, i.e. if $W[j]f(n) = f \star \widehat{\psi}_{i,n}$, then

 $W[j]T_cf(n) = T_cW[j]f(n)$

Wavelet Transform & T_{τ}

In the fourier domain, a wavelet transform $\psi_j \star f$ bandpasses the signal over windows whose width decreases exponentially with j, so that both f and $T_\tau f$ are captured within the same wavelet, regardless of ξ



A Wavelet transform isn't translation invariant, but it does commute with the translation operator, i.e. if $W[j]f(n) = f \star \widehat{\psi}_{j,n}$, then

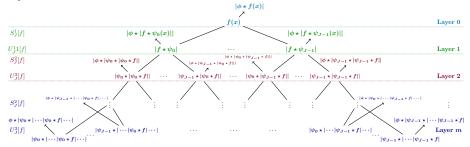
$$W[j]T_cf(n) = T_cW[j]f(n)$$

Scattering Transform

A single propagating layer $U_J^m[f]$ of the scattering transform is a vector consisting of alternating convolution with wavelets $\widehat{\psi}_j(\omega) = \widehat{\psi}\big(2^{j/Q}\omega\big)$ with scales ranging from the finest 0 to the coarsest J-1 and a modulus $|\cdot|$:

$$U_J^1[f] := (|\psi_0 \star f|, \dots, |\psi_{J-1} \star f|)$$

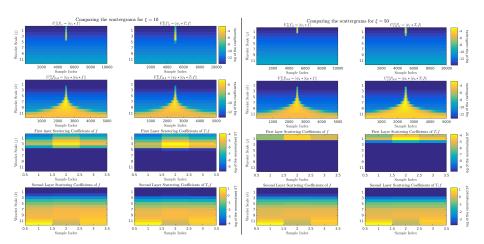
$$U_J^2[f] := (|\psi_0 \star |\psi_0 \star f||, |\psi_1 \star |\psi_0 \star f||, \dots, |\psi_{J-1} \star |\psi_0 \star f||, \dots, |\psi_{J-1} \star |\psi_{J-1} \star f||)$$



The output $S_J^m[f]$ is taken by averaging every term of $U_J^m[f]$ with the father wavelet ϕ corresponding to ψ , then subsampling.

40.40.45.45. 5 200

Scattering Transform comparison of f and $T_{ au}f$



Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all $f \in L^2(Rf^d)$ and $c \in Rf^d$, if (ψ, ϕ) are admissible, then

$$\lim_{J \to -\infty} ||S_J[f] - S_J[T_c f]||_2 = 0 \tag{4}$$

as the scale goes to infinite resolution, the scattering transform is translation invariant. In addition it preserves the total energy

$$||f||_2 = ||S_J[f]||_2$$
 where $S_J[f] := (S_J^0[f], S_J^1[f], \dots, S_J^m[f], \dots)$

Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all $f \in L^2(Rf^d)$ and $c \in Rf^d$, if (ψ, ϕ) are admissible, then

$$\lim_{J \to -\infty} ||S_J[f] - S_J[T_c f]||_2 = 0$$
 (4)

as the scale goes to infinite resolution, the scattering transform is translation invariant. In addition it preserves the total energy

Theorem (Energy conservation from [Mallat, 2012])

For all $f \in L^2(\mathbb{R}^d)$, if (ψ, ϕ) are admissible, then

$$||f||_2 = ||S_J[f]||_2 \quad \text{where} \quad S_J[f] := \left(S_J^0[f], S_J^1[f], \dots, S_J^m[f], \dots\right),$$

$$||S_J[f]||_2^2 := \sum_{m=0}^{\infty} ||S_J^m[f]||_2^2$$

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported $f \in L^2(\mathbb{R}^d)$ satisfying $\|\sum_m U_J^m f\|_1 < \infty$ and $\tau \in C^2(\mathbb{R}^d)$ where $\|\nabla \tau\|_{\infty} \leq \frac{1}{2}$ and $\|\tau\|_{\infty}/\|\nabla \tau\|_{\infty} \leq 2^J$, there is a C such that:

$$\left\| S_{J}[T_{\tau}f] - S_{J}[f] \right\|_{2} \le C \left\| \sum_{m} U_{J}^{m} f \right\|_{1} \left(\|\nabla \tau\|_{\infty} + \|H\tau\|_{\infty} \right)$$
 (5)

A more recent result is that for general frames, and not just admissible wavelets, that increasing the depth m increases translation invariance:

Theorem (Depth translation invariance, [Wiatowski and Bölcskei, 2015]

If R_n is the subsampling rate layer n, as long as the wavelets have frame bounds B_n satisfying $\max\{B_n, B_n R_n^d\} \le 1$, the features at depth m satisfy:

$$S_m[T_c f] = T_{\frac{c}{R_1 \cdots R_{m-1}}} S_m[f] \tag{6}$$

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported $f \in L^2(\mathbb{R}^d)$ satisfying $\|\sum_m U_J^m f\|_1 < \infty$ and $\tau \in C^2(\mathbb{R}^d)$ where $\|\nabla \tau\|_{\infty} \leq \frac{1}{2}$ and $\|\tau\|_{\infty}/\|\nabla \tau\|_{\infty} \leq 2^J$, there is a C such that:

$$\left\| S_{J}[T_{\tau}f] - S_{J}[f] \right\|_{2} \le C \left\| \sum_{m} U_{J}^{m} f \right\|_{1} \left(\|\nabla \tau\|_{\infty} + \|H\tau\|_{\infty} \right)$$
 (5)

A more recent result is that for general frames, and not just admissible wavelets, that increasing the depth m increases translation invariance:

Theorem (Depth translation invariance, [Wiatowski and Bölcskei, 2015])

If R_n is the subsampling rate layer n, as long as the wavelets have frame bounds B_n satisfying $\max\{B_n, B_n R_n^d\} \le 1$, the features at depth m satisfy:

$$S_m[T_c f] = T_{\frac{c}{R_1 \cdots R_{m-1}}} S_m[f] \tag{6}$$

References I

Bruno A Olshausen, D. J. F. (1996).

Emergence of simple-cell receptive field properties by learning a sparse code for natural images.

Nature, (381):607-609.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

ImageNet classification with deep convolutional neural networks.

In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, *Advances in Neural Information Processing Systems 25*, pages 1097–1105. Curran Associates, Inc.

Mallat, S. (2012).

Group invariant scattering.

Communications on Pure and Applied Mathematics, 65(10):1331–1398.

Wiatowski, T. and Bölcskei, H. (2015).

A mathematical theory of deep convolutional neural networks for feature extraction.

References II

Bruno A Olshausen, D. J. F. (1996).

Emergence of simple-cell receptive field properties by learning a sparse code for natural images.

Nature, (381):607-609.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

ImageNet classification with deep convolutional neural networks.

In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc.

Mallat, S. (2012).

Group invariant scattering.

Communications on Pure and Applied Mathematics, 65(10):1331–1398.

Wiatowski, T. and Bölcskei, H. (2015).

A mathematical theory of deep convolutional neural networks for feature extraction.

