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Convolutional Neural Networks

Classi�cation

x ∈ X is the input

y ∈ Y is the output, usually one of a �nite number of classes, e.g. A, B

We have labelled training data (xi , yi )N
i=1

We are looking for a function F : X → Y which will classify new,
unlabelled examples
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Convolutional Neural Networks

Neural Networks
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Convolutional Neural Networks

Convolutional Neural Networks

Instead of single values for each weight matrix we can output an entire
vector by using convolution instead of a dot product:

a j (k) =σ(
~W ( j−1)?~a( j−1)(k)

)

Figure: From http://deeplearning.net/tutorial/lenet.html
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Convolutional Neural Networks

Visual system, CNNs, & wavelets

Figure: The �lters from [Krizhevsky et al., 2012]

Figure: Sparsifying basis functions having similar structure to receptive �elds,
from [Bruno A Olshausen, 1996]
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Wavelet and Fourier Transforms

Wavelets

De�nition

A Wavelet Transform uses wavelets which are translations and rescalings of
a single mother wavelet ψ:

ψn, j (x) = a−n/2ψ
(
a−n(x −nb)

)
W [n, j ] f = f ?ψn, j :=

∫
f (x)a−n/2ψ

(
a−n(x −nb)

)
dx

where the mother wavelet ψ satis�es ‖ψ‖2 = 1 and
∫
ψdx = 0.

The restrictions on the mother wavelet second part is our �rst example of
an admissibility condition.
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Wavelet and Fourier Transforms

Morlet Wavelet

Example (Morlet Wavelet)

In the frequency domain, Morlet Wavelets are Gaussian modulated

sinusoids shifted from the origin to make them almost analytic:

ψ(t ) = cξe−t 2/2
(
eiξt −κξ

)
⇔ ψ̂(ω) = cξ

(
e−(ω−ξ)2/2 −κξe−ω

2/2
)

(1)

κξ is used to make ψ admissible, while cξ is a normalization factor.
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Wavelet and Fourier Transforms

Father and Mother wavelets

Paired with this mother wavelet is a �father wavelet�, or scaling function φ,
which captures the remaining low frequency information.

De�nition

The father wavelet φ (paired with mother wavelet ψ) is speci�ed by its
Fourier Transform

|φ̂(ξ)|2 =
∞∫
ξ

|ψ̂(η)|2
η

dη

There is an admissibility condition on φ and ψ such that the set{
ψ j ,n

}
( j ,n)∈N+×Z forms an orthonormal basis of L2

(
R
)
.
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Wavelet and Fourier Transforms

Signal invariants

The classes that are relevant in scattering problems have two easily
identi�able invariants:

Translation:

An operator Φ is translation invariant if Φ(Tc f )(t ) =Φ( f )(t ) for c ∈R,
where Tc [ f ] = f (t − c)

Lipschitz continuity under small di�eomorphism

An operator Φ is Lipschitz-continuous relative to operators of the form
Tτ[ f ](t ) = f (t −τ(t )) if ∀Ω ∈Rd , there is a universal bound C for
f ∈ L2(Rd )

‖Φ( f )−Φ(Tτ f )‖H ≤C‖ f ‖(‖∇τ‖∞+‖Hτ‖∞
)

(2)
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Wavelet and Fourier Transforms

Why not just use the Fourier Transform?

The Fourier transform is translation invariant, but it is not Lipschitz
continuous under di�eomorphisms:
Let τ(t ) = st , with |s| < 1, and f (t ) = eiξtθ(t ), where θ is even and O

(
e−x2)

then Tτ[ f ](t ) = f
(
(1− s)t

)
translates the central frequency ξ to (1− s)ξ

‖T̂τ f − f̂ ‖ ∼ |s||ξ|‖θ‖ = |ξ|‖ f ‖‖∇τ‖∞ (3)

No universal bound for arbitrary ξ!
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Wavelet and Fourier Transforms

Wavelet Transform & Tτ

In the fourier domain, a wavelet transform ψ j ? f bandpasses the signal
over windows whose width decreases exponentially with j , so that both f
and Tτ f are captured within the same wavelet, regardless of ξ

Frequency (ω)
0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

1.5

2

ξ = 50 limited by ψ̂0

Scattering Wavelets

ψ̂0f̂(ω)

ψ̂0T̂τf(ω)

Effect of Nonlinear Translation on the Scattering Coefficients
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A Wavelet transform isn't translation invariant, but it does commute with
the translation operator, i.e. if W [ j ] f (n) = f ? ψ̂ j ,n , then

W [ j ]Tc f (n) = TcW [ j ] f (n)
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Scattering Transform

Scattering Transform

A single propagating layer U m
J [ f ] of the scattering transform is a vector consisting

of alternating convolution with wavelets ψ̂ j (ω) = ψ̂(
2 j/Qω

)
with scales ranging

from the �nest 0 to the coarsest J −1 and a modulus | · |:
U 1

J [ f ] :=(|ψ0? f |, . . . , |ψJ−1? f |)
U 2

J [ f ] :=(|ψ0? |ψ0? f ||, |ψ1? |ψ0? f ||, . . . , |ψJ−1? |ψ0? f ||, . . . . . . , |ψJ−1? |ψJ−1? f ||)

U1
J1[f ]

S1
J [f ]

U2
J [f ]

S2
J [f ]

U2
J [f ]

S2
J [f ]

f(x)

|f ? ψ0|

|ψ0 ? |ψ0 ? f ||

...

|ψ0 ? | · · · |ψ0 ? f | · · · |
|ψJ−1 ? | · · · |ψ0 ? f | · · · |

...

|ψJ−1 ? |ψ0 ? f ||

...
...

|f ? ψJ−1|

|ψ0 ? |ψJ−1 ? f ||

...
...

|ψJ−1 ? |ψJ−1 ? f ||

...
...

|ψ0 ? | · · · |ψJ−1 ? f | · · · | Layer m

...

Layer 2

Layer 1

Layer 0

|ψJ−1 ? | · · · |ψJ−1 ? f |

|φ ? f(x)|

|φ ? |f ? ψJ−1(x)|||φ ? |f ? ψ0(x)||

|φ ? |ψ0 ? |ψ0 ? f || |φ ? |ψJ−1 ? |ψJ−1 ? f ||

|φ ? |ψJ−1 ? | · · · |ψ0 ? f| · · · | |φ ? |ψ0 ? | · · · |ψJ−1 ? f| · · · |

|φ ? |ψ0 ? | · · · |ψ0 ? f | · · · |

|φ ? |ψ0 ? |ψJ−1 ? f|||

|φ ? |ψJ−1 ? | · · · |ψJ−1 ? f |

|φ ? |ψJ−1 ? |ψ0 ? f|||

. . .

. . . . . .. . .

. . . . . .
· · ·. . . . . .

The output Sm
J [ f ] is taken by averaging every term of U m

J [ f ] with the father

wavelet φ corresponding to ψ, then subsampling.
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Scattering Transform

Scattering Transform comparison of f and Tτ f
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Scattering Transform

Useful Properties

Theorem (Limit Translation Invariance from [Mallat, 2012])

For all f ∈ L2(R f d ) and c ∈ R f d , if (ψ,φ) are admissible, then

lim
J→−∞

‖S J [ f ]−S J [Tc f ]‖2 = 0 (4)

as the scale goes to in�nite resolution, the scattering transform is
translation invariant. In addition it preserves the total energy

Theorem (Energy conservation from [Mallat, 2012])

For all f ∈ L2(Rd ), if (ψ,φ) are admissible, then

‖ f ‖2 = ‖S J [ f ]‖2 where S J [ f ] :=
(
S0

J [ f ],S1
J [ f ], . . . ,Sm

J [ f ], . . .
)
,

‖S J [ f ]‖2
2 :=

∞∑
m=0

‖Sm
J [ f ]‖2

2
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Scattering Transform

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported f ∈ L2
(
Rd

)
satisfying ‖∑

m U m
J f ‖1 <∞ and

τ ∈C 2(Rd ) where ‖∇τ‖∞ ≤ 1
2 and ‖τ‖∞/‖∇τ‖∞ ≤ 2J , there is a C such that:∥∥∥S J [Tτ f ]−S J [ f ]
∥∥∥

2
≤C

∥∥∥∑
m

U m
J f

∥∥∥
1

(
‖∇τ‖∞+‖Hτ‖∞

)
(5)

A more recent result is that for general frames, and not just admissible
wavelets, that increasing the depth m increases translation invariance:

Theorem (Depth translation invariance, [Wiatowski and Bölcskei, 2015])

If Rn is the subsampling rate layer n, as long as the wavelets have frame

bounds Bn satisfying max{Bn ,BnRd
n } ≤ 1, the features at depth m satisfy:

Sm[Tc f ] = T c
R1 ···Rm−1

Sm[ f ] (6)

dsweber@math.ucdavis.edu (UC Davis) Formalizing Convolutional Neural Networks January 12, 2016 15 / 17



Scattering Transform

Theorem (Lipschitz Continuity from [Mallat, 2012])

For all compactly supported f ∈ L2
(
Rd

)
satisfying ‖∑

m U m
J f ‖1 <∞ and

τ ∈C 2(Rd ) where ‖∇τ‖∞ ≤ 1
2 and ‖τ‖∞/‖∇τ‖∞ ≤ 2J , there is a C such that:∥∥∥S J [Tτ f ]−S J [ f ]
∥∥∥

2
≤C

∥∥∥∑
m

U m
J f

∥∥∥
1

(
‖∇τ‖∞+‖Hτ‖∞

)
(5)

A more recent result is that for general frames, and not just admissible
wavelets, that increasing the depth m increases translation invariance:

Theorem (Depth translation invariance, [Wiatowski and Bölcskei, 2015])

If Rn is the subsampling rate layer n, as long as the wavelets have frame

bounds Bn satisfying max{Bn ,BnRd
n } ≤ 1, the features at depth m satisfy:

Sm[Tc f ] = T c
R1 ···Rm−1

Sm[ f ] (6)

dsweber@math.ucdavis.edu (UC Davis) Formalizing Convolutional Neural Networks January 12, 2016 15 / 17



References

References I

Bruno A Olshausen, D. J. F. (1996).

Emergence of simple-cell receptive �eld properties by learning a sparse code for
natural images.

Nature, (381):607�609.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

ImageNet classi�cation with deep convolutional neural networks.

In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems 25, pages 1097�1105. Curran
Associates, Inc.

Mallat, S. (2012).

Group invariant scattering.

Communications on Pure and Applied Mathematics, 65(10):1331�1398.

Wiatowski, T. and Bölcskei, H. (2015).

A mathematical theory of deep convolutional neural networks for feature extraction.

dsweber@math.ucdavis.edu (UC Davis) Formalizing Convolutional Neural Networks January 12, 2016 16 / 17



References

References II

Bruno A Olshausen, D. J. F. (1996).

Emergence of simple-cell receptive �eld properties by learning a sparse code for
natural images.

Nature, (381):607�609.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

ImageNet classi�cation with deep convolutional neural networks.

In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems 25, pages 1097�1105. Curran
Associates, Inc.

Mallat, S. (2012).

Group invariant scattering.

Communications on Pure and Applied Mathematics, 65(10):1331�1398.

Wiatowski, T. and Bölcskei, H. (2015).

A mathematical theory of deep convolutional neural networks for feature extraction.

dsweber@math.ucdavis.edu (UC Davis) Formalizing Convolutional Neural Networks January 12, 2016 17 / 17


	References

