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Signal Invariants

How to construct a feature extractor that is invariant to
task-irrelevant deformations in the data? Some examples:

Translation | T.[fl=f(x-¢)

Modulation | M,[f] =e®!f(x)
Scaling | Zulf1=f(+a) am Naokd Saito

Amplitude | Aulf] = af(x) L”‘
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How to construct a feature extractor that is invariant to
task-irrelevant deformations in the data? Some examples:
Translation | T.[fl=f(x-¢)
Modulation | My[f]=e*!f(x)
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[Amari, 1968] and [Otsu, 1973] demonstrated that only trivial
linear features are absolutely invariant to even just translation, so
they use relative invariance of feature extractor p:

plT:fl=n(c)plf]
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How to construct a feature extractor that is invariant to
task-irrelevant deformations in the data? Some examples:
Translation | T.[fl=f(x-¢)
Modulation | My[f]=e*!f(x)

Scaling alf1= f(a) By
Amplitude Aglfl=af(x) kkk
[Amari, 1968] and [Otsu, 1973] demonstrated that only trivial gzj:;t,icjﬁam

linear features are absolutely invariant to even just translation, so
they use relative invariance of feature extractor p:

plT:fl=n(c)plf]

They establish that the only linear feature extractors p[f1 = (f, p}
that are relatively invariant w.r.t. both amplitude and translation
deformations are Fourier-Laplace type, i.e. for some z € C?

/f(x) ce”* dx
Rd



Generalized Scattering Transform

A single propagating layer u[q;]f of the generalized scattering

transform is a vector consisting of semi-discrete shift invariant frame

transforms v om * f indexed by Ag.m) € A, a pointwise nonlinearity o,
i

with Lipschitz constant y,;, and a subsampling factor ry,; > 1.
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Generalized Scattering Transform

A single propagating layer u[q;]f of the generalized scattering
transform is a vector consisting of semi-discrete shift invariant frame
transforms v om * f indexed by Ag.m) € A, a pointwise nonlinearity o,
i
with Lipschitz constant y,,;, and a subsampling factor rp; = 1.Putting
together k indices in a path g = (Agm),...,ﬂtg)) gives the propagating David Weber
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value at layer m:

uldlf = d,z o, * £)on) m=1
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And so on, until the deswed depth.
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And so on, until the deswed depth. The output s™[f] is taken by
averaging u(f] for every path g of depth m with one atom ¢, and
then subsampling:

s, A1 fi=pm x ™, A1



Generalized Scattering Transform

A single propagating layer u[q;]f of the generalized scattering
transform is a vector consisting of semi-discrete shift invariant frame
transforms v om * f indexed by Ag.m) € A, a pointwise nonlinearity o,
i
with Lipschitz constant y,,;, and a subsampling factor rp; = 1.Putting
together k indices in a path g = (Agm),...,ﬂtg)) gives the propagating David Weber
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And so on, until the de5|red depth. The output s™[f] is taken by
averaging u(f] for every path g of depth m with one atom ¢, and
then subsampling:

s, A1 fi=pm x ™, A1

If we write s without an index, this is the collection of outputs at all
layers up to some desired M: 0,1,..., M.



Generalized Scattering Transform

Layer 0
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q«» .ol u[gn, 0,...,T

The original scattering transform specifies that o, =|-|,
indexes by A, = {aj/Q'"h}j>_]m,h€Hm for some rotation h in
the discrete rotation group Hy,, subsamples only the output,
and has strong conditions on the parent wavelets ¥ and ¢.
Q is the quality factor, which can vary by layer.



Previous Theory

Translation

The first results on Scattering transforms were from
[Mallat, 2012] and his group. A more recent generalization
for “weakly admissible” frames, and not just wavelets, that
increasing the depth m increases translation invariance:

Theorem (Depth translation invariance,

[Wiatowski and Bolcskei, 2015])

As long as the frames have upper frame bounds by, satisfying
max{by,, Ymbnl/ri} <1, the features at depth m satisfy:

S™MTefl=T__S™[f]

" Tm-1

Further if the output atoms satisfy ¢lw| < K, this implies a
bound on the difference in norm:

27|c|K
rl * rm

IS™1f1=S"[Tcf1ll < I1£1l2
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Previous Theory

Non-uniform Translation and Modulation

In addition to this quasi-translation invariance, this
generalized scattering transform is stable under space and
frequency modulations:

David Weber

FT,(U [f] (x) = eiw(X)f(x - T(x)) and Naoki Saito

Theorem (Stability, [Wiatowski and Bolcskei, 2015])

If f is a band limited function, w and T are continuous, T is
once differentiable and | V7| < ﬁ, there is a C independent
of S so that

Scattering
Transform

| st1-8[Frolf] ||2 < Cllfll2(RITlloo + l0lloo)

where the norm on S is just |-l on each output element




Sonar Scattering
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Sonar Scattering
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Figure: 1D scattering transform of the shell with m <2,

Q1 =8,Q2 =1, and the averaging function ¢ having width 80% of
the total width. Q,; here is the number of wavelets per octave in
layer m, i.e. the scale factor is a =2/



1D Classifier

Consider each 2D wavefield as a set of 1D signals, perform a
scattering transform using Morlet Wavelets, and use the
resulting vectors as the input to a linear classifier, in our case
Sparse logistic regression.
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Figure: The triangle, the sharkfin and observation paths



Implementation Details

* As m increases, the remaining energy is concentrated at David Weber
m . . - and Naoki Saito

coarser scales, so only those S7" with increasing scales at
deeper layers are kept for computational reasons (e.g.
|p % [y * |1 * flll is kept, while | * [y x [y x flll is
not).

* Discrimination is also concentrated towards coarser S

scales empirically



Synthetic Experiments
Material Discrimination

o Comparing Material Detection for a Triangle
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Figure: The ROC curve for detecting the material difference in a
triangle, for speeds of sound ¢; =2000m/s and ¢; =2500m/s.



Synthetic Experiments
Shape Discrimination

. Comparing Triangle/Sharkfin discrimination

/

0.8

David Weber
and Naoki Saito

°
S

True Positive

°
=

I/
Y

0.0

Sonar

— finersT Classification
~— coarser ST
| = AVFT

00 02 04 06 08 10
False Positive

Figure: The ROC curve for discriminating a shark-fin from a
triangle where both have a speed of sound fixed at 2000m/s.



Real Experiments
UXO Detection

Comparing UXO detection
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Figure: The ROC curve for detecting UXOs. The scattering
transform has two layers, with quality factors Q; = Q, =8



Synthetic Experiments

Specific examples

Triangle speed 4000 angle 230 Sharkfin speed 4000 angle 230 Rectangle speed 4000 angle 230
- | —
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Triangle speed 1000 angle 230 Sharkfin speed 1000 angle 230 Rectangle speed 1000 angle 230
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g g T T Sonar

Classification

The results from a depth 3 scattering transform with (Q; =8
Q2=8, Q3=1, 0< m<3) on various materials and shapes,
for a fixed angle (230°) and track position (7 =200 out of

481)



Synthetic Experiments

Averages

Average Triangle speed 4000 Average Sharkfin speed 4000 Average Rectangle speed 4000
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The same scattering transform, but each plot is now
averaged over rotation and translation



Synthetic Experiments
Shape Discrimination Coefficients
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Figure: The GLMNET coefficients selected in one run. Red
coefficients correspond to the triangle class, while blue to the
sharkfin



Object Domain vs Signal Domain

David Weber
and Naoki Saito

(b) signal domain

(a) object domain

The invariants discussed in the first part of the talk are in the
signal domain f(¢—c¢). What happens when we move or
deform the triangle? Object Domain
* Translation perpendicular to the rail
* Translation along rail
* Rotation
* Shape deformation
Material deformation



Object Domain

Changing the speed of sound

Snell's law: Given a wave perpendicular to a boundary going
from Q€ to Q, in the case of a rectangular region of width D,
we have

H _ P26—p1C
Reflected magnitude Va1 = oo e
. . _ pl(,‘l avia eber
Transmitted magnitude Wy = Tre i o] el Befies

peak after n internal reflections | A, = Wa, 1 VI W o -8
As important, the distance between peaks is ¢} D, giving signals that are
pseudo-periodic with decreasing magnitude. The frequency of the end
result corresponds directly to the speed of sound in the material

Observer

Object Domain

Q¢ Czl

C1

D = diam|(Q)




Object Domain

Changing the speed of sound

The point: speed shows up clearly in the Fourier domain, so
even the AVFT will do quite well.

o Comparing Material Detection for a Triangle
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Figure: The ROC curve for detecting the material difference in a
triangle, for speeds of sound ¢; =2000m/s and ¢; =2500m/s.



Object Domain vs Signal Domain
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(b) signal domain

(a) object domain

The invariants discussed in the first part of the talk are in the
signal domain f(¢—c¢). What happens when we move or
deform the triangle? Object Domain
* Translation perpendicular to the rail
* Translation along rail
* Rotation
* Shape deformation
Material deformation



Object Domain
Helmholtz equation

For a pure sinusoid of frequency w, the amplitude of the
returned signal is given by the Helmholtz equation:
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Auw+k%uw=0 in Q k‘g
Avw+k§vw:0 in Q° 0%
Uy —Vy=g on 0Q
OyUy—0yVy=0yg on 0Q

V | x| (6|x| - lkz) Vp(x) — 0 as |x| — oo Object Domain



Object Domain

Helmholtz equation solution

Real signals aren't pure sinusoids, but instead a compactly supported
“chirp” s(1)

Input Signal

™\

/ David Weber
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amplitude

time (ms)

The time varying solution at a point X is given as an integral across
frequencies by

o0

ft,x) = / S(w) up (Fe ! do

—00

Object Domain

Far field gives an approximate form in terms of a radial solution ©(w,6),
that depends on the geometry, and a radial function R(w,r) = Jo(kor1),
which is always a Bessel function of the first kind (saw yesterday)!



Object Domain
Rotation
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Figure: Synthesizing the rail x¢ from its neighbors x; and x_;

Use the far field approximation to obtain a first order estimate of the

dependence on rotation Object Domain

(o0}
fr,%o(q) = / S H(g,0)K (0,31 (T(@))e @ do
—00
H(q,w) is a ratio of Bessel functions, while T(g) gives the mapping from
q to r. We give conditions for when H can be written as a translation

diffeomorphism.
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Synthetic Experiments

Setup Description

We use Mallat's framework with Morlet Wavelets, and
compare with the absolute value of the Fourier transform
(AVFT). We use two scattering transforms:

Type || Ql | Qz | Q3 David Weber
Finer 8 8 1 and Naoki Saito
Coarser || 8 | 4 | 4

* Each signal is normalized so the maximum amplitude is 1

* White Gaussian noise is added to get average SNR is
about 5dB.

* Multiclass logistic regression with Lasso (via GLMNET )
is used as a feature extractor and a classifier.

* Perform 10-fold cross validation, i.e., repeat the
classification 10 times by randomly splitting the whole
dataset into training and test sets with 50/50.

[Naoki Saito, 2017]



	Object and Signal Invariants
	Scattering Transform
	Sonar Classification
	Object Domain
	Appendix

